
Douglas Ricker Dechow, Dan Tyler Abell, Peter Stoltz, Tech-X Corp., Boulder, CO 80303, USA
Lois Curfman McInnes, Boyana Norris ANL, Argonne, IL 60439, USA

James Frederick Amundson, Fermilab, Batavia, IL 60510, USA

Abstract
A prototype of a component-based beam dynamics ap-

plication has been developed. The Common Component

Architecture (CCA) [5] software infrastructure was used

to compose a new Python-steered, FODO-cell simulation

from a set of beamline elements provided by MaryLie/IM-

PACT (ML/I) [1]. The prototyped FODO-cell simula-

tion is preparatory work for a larger, ongoing effort to

model collective effects using a component-based version

of the Synergia2 [12] beam dynamics framework. Syner-

gia2 coordinates a suite of modeling services provided by

two separate beam dynamics packages (Impact [10] and

Chef) and two high-performance computer science pack-

ages (PETSc [3] and FFTW [7]). The development of the

proof-of-concept application was accomplished via the fol-

lowing tasks: 1) addressing multilanguage interoperabil-

ity in the ML/I code with Babel; 2) creating the necessary

components by making the selected software objects ad-

here to the CCA protocol; and 3) assemblying the com-

ponents with a newly developed, Component Builder gui.

The eventual, component-based beam dynamics applica-

tion will allow the Synergia2 framework to evolve simul-

taneously with the modeling and simulation requirements

of the International Linear Collider (ILC).

INTRODUCTION

The development process of the accelerator simulation

community has traditionally been dominated by the pro-

duction of monolithic codes. The DOE is seeking to sup-

port the development of high-performance scientific soft-

ware packages that manage complexity while facilitating

portability and interoperability. One way to address these

issues that has been gaining popularity, in the larger com-

putational science community, is the migration of appli-

cations towards the use of a scripting language interface

to steer simulations [4]. The Synergia2 [12] application,

a 3-D, parallel, particle-in-cell beam dynamics simulation

toolkit, adopted a Python-steered simulation interface with

the release of version two.

Another software technique to address these issues is

through the practices of Component-Based Software En-

gineering (CBSE) [8]. Migrating a computational science

application like Synergia2 to a scripting language-based,

steering interface is dependent upon clean, well factored

software interfaces. This was a process which we had al-

ready undertaken with Synergia2. As such, it was only nat-

ural that we also began to evaluate component-based tech-

niques, since they have many of the same requirements.

COMMON COMPONENT
ARCHITECTURE (CCA)

For the purpose of prototyping a component-based ac-

celerator simulation, we have chose to use the Common

Component Architecture (CCA). The CCA is a specifica-

tion and a toolset for developing scientific software from

interchangeable parts, components.

The most basic unit of interaction between CCA compo-

nents is the port. A port is analogous to a method in a OO

language or a function, procedure, or subroutine in a proce-

dural langauge. CCA port relationships are defined by the

Provides/Uses design pattern. As such, they come in two

flavors:

1. A providesPort defines a protocol that will be sup-

ported by the component implementation.

2. A usesPort specifies that a component will interact

with another component by means of the protocal de-

scribed in its providesPort

CCA Tools
The primary CCA tools that were used to create the pro-

totype FODO-cell simulation are the following:

• Scientific Interface Definition Language (SIDL)

• Babel [9, 6]

• CCAFFEINE [2]

Connections between a component offering up a pro-
videsPort and a requesting component with a correspond-

ing usesPort are managed by a component framework. The

component framework is also used to provide runtime in-

frastructure to support a comoponent-based simulation. For

this project, we used the CCA-compliant CCAFFEINE

framework. Ports and their relationships are encoded in

SIDL. SIDL is the programming language that the Babel

tool uses to address the issue of language interoperability

between components implemented in different languages.

Multi-language Interoperability
Because Synergia2 is a hybrid software application

that is comprised of beam dynamics framework2, high-

performance computational science libraries, and a steered

A BEAM DYNAMICS APPLICATION BASED ON THE COMMON
COMPONENT ARCHITECTURE

THPAS019 Proceedings of PAC07, Albuquerque, New Mexico, USA

05 Beam Dynamics and Electromagnetic Fields

3552

D05 Code Developments and Simulation Techniques

1-4244-0917-9/07/$25.00 c©2007 IEEE

Table 1: The programming languages used by the Syner-

gia2 scientific packages and libraries.

Packages Python C++ C F90 F77
Synergia2-

Simulations

X

Synergia2-

New Solvers

X

Synergia2-

IMPACT

X

Synergia2-

Chef

X

MaryLie/

IMPACT

X X

PETSc X

simulation interface, tools which are written in several dif-

ferent languages, multi-language interoperability is of great

interest to our current and planned work. Table 1 contains

a matrix associating the primary Synergia2 project pack-

ages and libraries and their respective implementation lan-

guages.

OASCR has funded the Babel project as a tool for ad-

dressing multi-language interoperability problems. Unlike

other language interoperability solutions, Babel specializes

in high performance computing and in Fortran 77/90 sup-

port. Babel makes use of CHASM [11] to provide Fortran

77/90 support.

The Babel compiler generates glue-code for each sup-

ported language based upon user-defined types that are de-

scribed in SIDL. The Babel runtime library provides basic

facilities and infrastructure to keep the model consistent.

At present, Babel supports Fortran 90, Fortran 77, Python,

Java, C, and C++.

One of the primary reasons for examining CBSD prac-

tices was a desire to use the Babel tool to handle the cre-

ation of our necessarily wide-range of language bindings.

CCA/SYNERGIA PROTOTYPE
APPLICATION

Our initial target for a component-based beam dynamics

simulation was the basic unit of modern accelerator design,

the FODO-cell. A FODO-cell lattice requires the ability

to calculate transfer maps for only three types of beamline

elements: a focusing quadrupole, a drift, and a defocusing

quadrupole. Transfer maps from each of these beamline

elements can be obtained in a simple, linear format in the

MaryLie/IMPACT [10] application.

The BeamOpticsPort encapsulates services related to ap-

plying transfer maps to the simulation particles in the beam

bunch. It is a one-to-one mapping of the ML/I routines that

are implemented by the component. Shown below is the

interface described in SIDL.

1 i n t e r f a c e BeamOpt ic sPor t ex tends gov . cca . P o r t

2 {
3 void fquad3 (i n double l ,

4 i n double gb0 ,

5 i n o u t a r r a y <double , 1 , column−major> h ,

6 i n o u t a r r a y <double , 2 , column−major> mh) ;

7

8 void dquad3 (i n double l ,

9 i n double gb0 ,

10 i n o u t a r r a y <double , 1 , column−major> h ,

11 i n o u t a r r a y <double , 2 , column−major> mh) ;

12

13 void d r i f t 3 (i n double l ,

14 i n o u t a r r a y <double , 1 , column−major> h ,

15 i n o u t a r r a y <double , 2 , column−major> mh) ;

16 }

Only the beamline magnetic elements that were neces-

sary to create the FODO-cell simulation were described in

the interface.

In order to execute a CCA-based simulation, it is neces-

sary to create a driver component. The driver component

is required to register/deregister the necessary ports, to cre-

ate the appropriate connections between the ports, and to

initiate the simulation. The port manipulation routines take

place in the setServices() method of the driver component.

For the purposes of the FODO-cell simulation, the

driver component was named Syn2ProtoDriverComp. An

example of how to register a usesPort, taken from

Syn2ProtoDriverComp, is shown below:

1 # R e g i s t e r u s e s p o r t
2 t r y :

3 s e r v i c e s . r e g i s t e r U s e s P o r t (

4 ’ BeamOpt ic sPor t ’ ,

5 ’ S y n e r g i a . BeamOpt ic sPor t ’ ,

6 mymap) ;

7 e x c e p t :

8 p r i n t s y s . e x c t y p e ,

9 s y s . e x c i n f o ()

10 p r i n t ’ e x c e p t i o n r e g i s t e r U s e s P o r t () ’

In order to register components with the CCAFFEINE

framework and execute a simulation, it is necessary to cre-

ate and run an rc script. An example of the rc script that

was used for the prototype is shown below:

#!ccaffeine bootstrap file.

------- don’t change anything ABOVE this line.--

path set /home2/cca/techx/aas-cca/components/lib

path set /home2/cca/techx/mli/cca/components/lib

repository get-global SynergiaCCA.Syn2ProtoDriverComp

instantiate SynergiaCCA.Syn2ProtoDriverComp

SynergiaCCASyn2ProtoDriverComp

repository get-global Synergia.BeamOptics

instantiate Synergia.BeamOptics SynergiaBeamOptics

connect SynergiaCCASyn2ProtoDriverComp BeamOpticsPort

SynergiaBeamOptics BeamOpticsPort

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAS019

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D05 Code Developments and Simulation Techniques

3553

Figure 1: The Component Builder GUI.

go SynergiaCCASyn2ProtoDriverComp GoPort

quit

Currently under development is a GUI-based tool for

creating component simulations. The Component Builder

GUI will served as an alternative to writing CCAFFEINE

rc scripts by hand. The Component Builder Gui is shown

in figure 1.

The go command in the rc script sends a message to

the go() method in the driver component. In the case of

our FODO-cell simulation, the go() method implements

a straightforward algorithm of invoking the ML/I beam-

line element subroutines through the component interface.

An example of this is demonstrated below (only the most

salient pieces of Python code are shown):

Get a handle to the BeamOpticsPort

bmprt = BeamOpticsPort.BeamOpticsPort(gnport);

Initialize the BeamOpticsPort

result = bmprt.initialize()

Apply the fquad3 transfer map

(h,mh) = bmport.fquad3(l,gb0,h,mh)

FUTURE WORK

The ultimate aim of the project is to create a compo-

nentized version of Synergia2. This will allow us to flexi-

bly create new collective effects-based acceleratio simula-

tions from a wide-range of component services. The proto-

type effort to create a FODO-cell lattice simulation from an

ML/I component has been deemed successful, and we are

moving ahead with our broader componentization effort.

REFERENCES

[1] A. Dragt et al., MARYLIE 3.0 Users Manual, University of

Maryland, Physics Department Report (1999).

[2] B. Allan, R. Armstrong, S. Lefantzi, J. Ray, E. Walsh, and

P. Wolfe. Ccaffeine – A CCA component framework for par-

allel computing. http://www.cca-forum.org/ccafe/,

2005.

[3] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith.

PETSc users manual. Technical Report ANL-95/11 - Revi-

sion 2.1.0, Argonne National Laboratory, 2001.

[4] D. M. Beazley and P. S. Lomdahl. Building flexible large-

scale scientific computing applications with scripting lan-

guages. 1997.

[5] D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand,

K. Chiu, T. L. Dahlgren, K. Damevski, W. R. Elwasif,

T. G. W. Epperly, M. Govindaraju, D. S. Katz, J. A. Kohl,

M. Krishnan, G. Kumfert, J. W. Larson, S. Lefantzi, M. J.

Lewis, A. D. Malony, L. C. McInnes, J. Nieplocha, B. Nor-

ris, S. G. Parker, J. Ray, S. Shende, T. L. Windus, and

S. Zhou. A component architecture for high-performance

scientific computing. Intl. J. High Perf. Comp. Appl.,
20(2):163–202, 2006.

[6] T. Dahlgren, T. Epperly, and G. Kumfert. Babel User’s
Guide. CASC, Lawrence Livermore National Laboratory,

version 0.10.8 edition, July 2005.

[7] M. Frigo and S. G. Johnson. The design and implementation

of FFTW3. In Proceedings of the IEEE, pages 216–231,

2005. Invited paper, Special Issue on Program Generation,

Optimization, and Platform Adaptation.

[8] G. T. Heineman and W. T. Councill, editors. Component-
based software engineering: putting the pieces together.

Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2001.

[9] Lawrence Livermore National Laboratory. Babel. http://

www.llnl.gov/CASC/components/babel.html, 2007.

[10] J. Qiang, R. D. Ryne, S. Habib, and V. Decyk. An Object-

Oriented Parallel Particle-in-Cell Code for Beam Dynam-

ics Simulation in Linear Accelerators. Journal of Computa-
tional Physics, 163:434–451, Sept. 2000.

[11] C. E. Rasmussen, M. J. Sottile, S. Shende, and A. D. Mal-

ony. Bridging the language gap in scientific computing: The

Chasm approach. Concurrency and Computation: Practice
and Experience, 2005. to appear.

[12] P. Spentzouris and J. Amundson. Simulation of the Fermi-

lab Booster using Synergia. Journal of Physics Conference
Series, 16:215–219, Jan. 2005.

THPAS019 Proceedings of PAC07, Albuquerque, New Mexico, USA

05 Beam Dynamics and Electromagnetic Fields

3554

D05 Code Developments and Simulation Techniques

1-4244-0917-9/07/$25.00 c©2007 IEEE

