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Abstract

We demonstrate the computational requirements for
a Green’s function based photocathode simulation code
called IRPSS. In particular, we show the necessary con-
ditions, e.g. eigenmode number and integration time-step,
for accurately computing the space-charge fields in IRPSS
to less than 1 % error. We also illustrate how numerical fil-
tering methods can be applied to IRPSS in conjunction with
a multislice approach, for dramatically improving compu-
tational efficiency of electromagnetic field calculations.

INTRODUCTION

The rf photoinjector is widely used as an electron source
in many electron accelerators to generate high-brightness
beams. Since the electron beam is emitted from the cath-
ode with very low energy, the space-charge forces play an
important role in beam dynamics. Therefore, it is necessary
to accurately analyze the space-charge fields in the rf pho-
toinjector. There a wide variety of simulation codes used
for modeling photoinjectors. Examples of these are elec-
trostatic codes, such as PARMELA [1], electromagnetic
Lienard-Wiechert codes, such as TREDI [2], and electro-
magnetic Yee/PIC codes, such as MAFIA [3]. Amongst
the electromagnetic codes, the Yee/PIC method is the most
popular. Unfortunately, there exist non-negligible numer-
ical errors in the Yee/PIC method, such as numerical grid
dispersion and numerical Cherenkov radiation which can
inhibit the simulation. [4] We have developed a fully elec-
tromagnetic simulation code called IRPSS (Indiana RF
Photocathode Source Simulator) for computing the elec-
tromagnetic space-charge fields based on Green’s function
methods [5, 6, 7]. The Green’s function method in IRPSS
enables it to calculate electromagnetic space-charge fields
to very high-accuracy (< 1% field error). In the present pa-
per, we outline the numerical requirements on the Greens
function method for achieving such high-accuracy. Our
paper is organized as follows. In Sec. 2, we review the
Greens function methodology used in IRPSS. In Sec. 3,
we illustrate the numerical requirements on IRPSS by using
simulation parameters corresponding to two photocathode
source experiments: the BNL 2.856 GHz experiment [8]
and ANL AWA 1.3 GHz experiment [9]. In Sec. 4, we
give a summary of the paper.
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THEORETICAL ELECTROMAGNETIC
FIELDS CALCULATIONS

The electromagnetic space-charge potentials with con-
ductor boundary conditions can be solved using Green’s
functions. [6] For the cavity of arbitrary pipe cross-section
with a flat cathode located at z = 0 the electromagnetic
potentials are written as

φ(r, t) =
1
ε0

∫ t

−∞

∫
Gφ(r, t; r′, t′)ρ(r′, t′)d3r′dt′

Az(r, t) = μ0

∫ t

−∞

∫
Gz(r, t; r′, t′)Jz(r′, t′)d3r′dt′

where Gφ,z are Green’s functions constructed from the
wave equations with the delta function sources, and ρ and
Jz are beam charge and current densities. The Green’s
functions may have different forms for different geometries
and sources. We assume in this paper, the beam distribution
function is

ρ(r, t) =
∑

i

2Q
πr2b,i

Θ(rb,i − r)

(
1 − r2

r2b,i

)
δ[z − z′′i (t)]

(1)
For a cylindrically symmetric half-pipe cavity, the Green’s
functions are given by

Gφ,z =
c

2

∑
n

ψmn(r⊥)ψmn(r′⊥)

×
[
Jm

(
jmn

λ−
a

)
Θ(λ2

−) ∓ Jm

(
jmn

λ+

a

)
Θ(λ2

+)
]

where ψmn are transverse eigenfunctions of the Helmholtz
equation and λ± = c2(t− t′)2 − [z ± z′′(t′)]2.

NUMERICAL CALCULATIONS OF THE
ELECTROMAGNETIC FIELDS

In the previous paper, we demonsrated the accuracy of
this method using an analytical benchmark. [6] The numer-
ical calculations required are transverse eigenmode sum-
mations, a time integration, spatial integrations over three
dimensional coordinates, and multisliced summations for
the bunched beam. In order to accurately simulate the
space-charge fields within less than 1% error, however, one
needs to consider the computational requirements for these
numerical implementations. For the given ρ in Eq. 1, one
can perform spatial integration analytically leaving only the
radial eigen mode summation and time integration for nu-
merical evaluations.
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We assume that the beam is moving through a prescribed
trajectory, z ′′(t), which is calculated in the presence of the
external rf field. In these simulations, the current is only in
the longitudinal direction.

Eigenmode Summations

We can estimate the required mode numbers from the
expansion of the charge density of the beam, in which each
Bessel function can be expressed in an asymptotic form of

J0(j0nr/a) ≈
√

2a
πj0nr

cos
(
j0n

r

a
− π

4

)

where j0nr/a � 1. In order to resolve the behavior of the
electromagnetic fields in the transverse direction, the argu-
ment of the asymptotic form must be larger than at least
one period. Since we are especially interested in the region
around the beam, r can be replaced by the beam radius, r b.
Thus, we can get the inequality,

j0M
rb
a

� 2π, (2)

where M is the minimum required radial mode number.
From this inequality relation, the appropriate transverse
eigenmode numbers can be estimated.

In Fig. 1, the radial electric fields are plotted as a func-
tion of r for 100, 500, 1000, and 2000 eigenmodes using
beam parameters corresponding to the BNL 2.856 GHz
photocathode source experiment, with rb/a = 0.02433,
ct/a = 0.25, and z/a = 0.225. [8] The number of trans-
verse eigenmodes necessary for accurately determining the
fields is inversely proportional to the transverse size of the
beam. In order to model the fields within 1% accuracy,
Eq. 2 indicates that it is necessary to sum over at least 2000
modes.
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Figure 1: Er vs. r/a for different eigenmode number.

Numerical Time Integrations

The formula for the space-charge fields using the
Green’s function method contain time integration factors,

which include the trajectory history of the bunch. Due
to the complexities of the integrands, however, it is nec-
essary to integrate these numerically, and to consider the
relation between the integration time step and the eigen-
mode number. Each field equation includes similar Bessel
function type arguments: J0(j0nλ±/a)θ(λ2

±). The differ-
ent signs correspond to the real(minus) and image(plus)
charges. The step functions represent the causality con-
ditions of the field, thus these factors enable rapid conver-
gence of the numerical calculation, when we simulate the
region in the front of the bunch.
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Figure 2: J0(j0nλ−)Θ(λ2
−) for 1, 100, 1000 eigenmode

numbers.

Fig. 2 shows J0(j0nλ−/a)θ(λ2−) as functions of t′ for
different transverse mode number, n, when t is fixed. As
n increases, J0(j0nλ−/a)θ(λ2

−) oscillates with time, and
these oscillations are smooth. But there are discontinuities
at certain values of t and z, which are generated by the step
function. These discontinuities generate numerical time in-
tegration errors, so that the time step, Δt′, must be small
enough to reduce errors around these points. This imposes
a maximum limit on the time step.

The time step must be chosen sufficiently small such that

j0n
cΔt′

a
<< 2π,

so that time integration over the Bessel functions are accu-
rate. Using Eq. 2, we find

Δt′ <<
0.01rb
c

.

From Fig. 2, however, the oscillation time is very short for
the large eigenmode number, thus we need much smaller
time step.

For the Ez calculations, the longitudinal field strongly
depends on the beam trajectory. Fig. 3 shows a plot of
Ez vs. z/a along the axis of symmetry for different time
steps. The oscillation periods are determined by the trans-
verse eigenmode number, n, and the integration step size,
Δt′. A smaller Δt′ reduces the amplitude of the oscilla-
tion. We can see that cΔt′/a = 10−4 is not small enough
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to resolve the fields, even though it is about factor of 200
times smaller than rb/a.
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Figure 3: Ez vs. z/a for different numerical integration
time steps: cdt′/a = 10−4, 10−5, and 10−6

Multislice Bunch Simulation

Since the bunched beam has finite size in the longitudinal
direction, a single slice beam is not adequate for modeling
the real beam. Thus the multi-sliced bunch model is intro-
duced to make it realistic. [7] We set up uniformly spaced
(in time), equally charged slices, which form one complete
bunch. In this section, the ANL AWA rf photoinjector gun
parameters with a bunch length of 9 ps are used. [9]

The required number of slices increases the computa-
tional time. In order to reduce the errors and computa-
tional time, we use a stopband filtering method for a small
number of slices. Fig. 4 shows plots of Ez , Filtered Ez ,
and Fast Fourier Transforms of each, along the axis and
the wavenumber, for different slice spacings. The filtering
method is a promising technique for reducing errors in a
multislice approach.

SUMMARY

In this work, we presented the numerical requirements to
computing the electromagnetic space-charge fields with a
Green’s function method within less than 1% error. We es-
timated the required eigenmode number for a given charge
distribution. For example, at least 2000 eigenmodes are
needed to get accurate results for the BNL 2.856 GHz rf
photoinjector. Numerical time integrations are conducted
using the trajectory of the beam. The numerical simula-
tion showed that the time integration step, cΔt ′, must be
much less than 0.01rb. To generalize the finite size beam,
the multislice beam model was studied with the filtering
method. For 9 ps bunch length of the AWA gun, the fil-
tering method reduces the required number of slices. We
plan to continue investigating improvements of code per-
fomance as well as simulating photocathode source exper-
iments.

0.02 0.03 0.04 0.05 0.06 0.07
z/a

N
or

m
al

iz
ed

 A
xi

al
 E

le
ct

ric
 F

ie
ld

0.02 0.03 0.04 0.05 0.06 0.07
z/a

N
or

m
al

iz
ed

 A
xi

al
 E

le
ct

ric
 F

ie
ld

0 0.2 0.4 0.6 0.8 1
wavenumber/k

z

F
F

T
 o

f N
or

m
al

iz
ed

 A
xi

al
 E

le
ct

ric
 F

ie
ld

0 0.2 0.4 0.6 0.8 1
wavenumber/k

z

F
F

T
 o

f N
or

m
al

iz
ed

 A
xi

al
 E

le
ct

ric
 F

ie
ld

Figure 4: FFT and Filtering results for different values of
slice spacing: Δt′s = 1 × 10−4(upper) and Δt′s = 5 ×
10−4(lower)
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