
MXYZPTLK: AN EFFICIENT, NATIVE
C++ DIFFERENTIATION ENGINE ∗

J.-F. Ostiguy and L. Michelotti
Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Abstract

Mxyzptlk was among the earliest implementations of a
differentiation engine reported in the literature [1, 2]. It was
created with an eye to enabling accelerator related compu-
tations, especially within the realm of perturbation theories.
Such computations are supported by (1) a one-to-one corre-
spondence between original mathematical abstractions and
the data types and operations used to implement them and
(2) accurate computation of high order derivatives. To this
day, mxyzptlk distinguishes itself by being among the few
available implementations that takes full advantage of the
native operator overloading capabilities of their implemen-
tation language.

Recently, significant efforts were expanded in modern-
izing mxyzptlk, both architecturally and algorithmically,
resulting in substantially improved performance, main-
tainability and usability. We present an overview of the
mxyzptlk internals and summarize current capabilities and
performance.

INTRODUCTION

In the early 1990’s, the development of a suite of li-
braries dedicated to accelerator simulation with an eye on
non-linear dynamics was initiated. The libraries would
take advantage of Automatic Differentiation (AD), a then
emerging technique. High order derivatives are the back-
bone of perturbation analysis in nonlinear dynamics; since
AD computes such derivatives to machine precision (some-
thing that standard finite difference techniques simply can-
not deliver) the technique is a natural and compelling fit.
C++ which had just arrived on the scene, was selected as

the implementation language because by design (1) it al-
lows user-defined types to have essentially the same status
as native types and (2) it provides comprehensive support
for operator overloading. An additional practical consider-
ation was that as, a superset of C, C++ was well-positioned
for commercial success, long term viability and availabil-
ity of development tools. This certainly turned out to be a
correct assumption.

This paper focuses on mxyzptlk, the automatic differ-
entiation engine which provides the foundation for an ac-
celerator computation framework. The status of this frame-
work is the object of a companion report. It should be em-
phasized that mxyzptlk contains no specific dependencies
on accelerator concepts and can be used independently in
applications where accurate computation of derivatives is

∗Work supported by Fermi Research Alliance, LLC under Contract
No. DE-AC02-07CH11359 with the United States Department of Energy.

relevant.
By the end of the 1990s mxyzptlk had reached a plateau

in stability and maturity. Until then, development empha-
sis had been put on correctness and was becoming painfully
obvious that performance was sub-optimal. A major over-
haul was started in mid-2003. Internal data structures were
redesigned, architectural and algorithmic changes were in-
troduced and, in the process, maximum advantage was
taken of idioms and features (e.g. templates) of C++ not
available in the early 1990s. While it would be instructive,
it is outside the scope of this report to discuss the imple-
mentation details made obsolete by recent efforts.

DATA TYPES

Mxyzptlk defines a number of data types; the principal
ones are: Jet, Jet environment, JLterm, JetVector,
Mapping and LieOperator.
Jet is the fundamental type.1 It generalizes the no-

tion of a variable (double or complex) by carrying supple-
mentary information about derivatives up to some speci-
fied order. Every Jet exists in the context of a specific
Jet environment (described below); furthermore, Jet
algebra can involve only Jets with compatible environ-
ments. A Jet environment is an attribute of a Jet
which encapsulates properties of the work environment e.g.
dimensionality of the variable space, maximum derivative
order and the expansion reference point. It also acts as a
central point for term (monomial) indexing facilities.

The information about numerical derivatives held within
a Jet corresponds (within a constant) to the monomial co-
efficients of a Taylor polynomial expansion. Each mono-
mial term is completely characterized by a numerical co-
efficient (double or complex) and a tuple of integers repre-
senting the monomial exponents, or equivalently, the order
of the partial derivatives associated to the coefficient. The
type JLterm encapsulates a monomial term. Each JLterm
holds a monomial coefficient, the (integer) offset of the ex-
ponent tuple in an pre-ordered table and an integer which
represents the “weight” or “total order” (the sum the indi-
vidual monomial exponents).

Through operator overloading, mxzypltlk provides
comprehensive support for mathematical operations on
Jets including the usual transcendental functions (sine, co-
sine, logarithm, exponential etc.). In addition, Jets sup-
ports functional composition, an essential ingredient for ac-
celerator related computations involving concatenation of
nonlinear element maps.

1The word Jet comes from the mathematical literature [3].

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAN113

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D05 Code Developments and Simulation Techniques

3489

A JetVector is simply what its name suggests: a vec-
tor of Jet quantities. Note that each component of a
JetVector can be interpreted a coordinate transformation
and therefore a JetVector can be viewed as a mapping.
In addition to JetVector mxyzptlk defines the derived
types Mapping and LieOperator which are used to rep-
resent mappings and operations arising in the context of
Hamiltonian perturbation theory.
mxyzptlk types are templated on the type of the mono-

mial coefficient, but not on maximum order since this
would complicate the memory allocation recycling strat-
egy as well as the use of multiple orders within in a single
program. Templates eliminate a fair amount of code du-
plication since one implementation can be used for either
the double and complex variant of a function. Judicious
usage of implicit type conversions also contributes to re-
ducing code duplication and code complexity by allowing
both double and complex Jets to inter-operate. Finally,
mxyzptlk is layered on a set of support classes that pro-
vide, among other things, support for linear algebra. These
classes can be instantiated for Jets: one can, for example,
factor a matrix of Jets.

IMPLEMENTATION

As already mentioned, a Jet is completely described by
its environment and by its monomials with non-zero coef-
ficients. A complete monomial basis for a polynomial of
order N in D variables is comprised of

M =
(N + D)!

N !D!
(1)

monomials. Needless to say, because of this combinatoric
scaling, M rapidly becomes very large. For example, with
D = 6 and N = 10, M = 8008. Any usable implemen-
tation of automatic differentiation must pay close attention
to memory management.

In mxyzptlk, the actual Jet representation in memory
is both sparse and ordered. By sparse, we mean that as
much a possible, monomonials with null coefficients are
not stored, although it is entirely permissible to store null
coefficients. Monomials, that is JLterm objects, are always
stored sequentially in memory and ordered by increasing
weight (total monomial order) and at equal weight, in in-
verse lexicographical order of exponent tuples.

Mathematical Operations

Ultimately, all mathematical operations on Jets are
reduced to sequences of additions and multiplications.
Therefore, the implementation of these two basic opera-
tions plays a dominant role.

Addition Although some complexity is introduced by
the sparse storage scheme (one needs to account for the
fact that a term in one operand may not have a correspond-
ing term) addition is a straightforward matter: terms with
identical indices are simply added together. Note that this

procedure can efficiently be performed if the terms in both
operands are ordered. Obviously, addition is order preserv-
ing.

Multiplication Multiplying Jets is significantly more
involved than addition. Jet algebra is essentially isomor-
phic to polynomial algebra, and multiplying two Jets with
a maximum of M terms leads to a possible maximum of
M2 monomial multiplications. Many of these operations
are vacuous (and altogether avoided) since they produce
monomials of weight larger than the maximum weight al-
lowed for the computations. As mentioned earlier, each
term (monomial) exponent tuple is only implicitly stored
through an integer representing an offset within an ordered
table. Monomial multiplication is accomplished by table
lookup. A multiplication table maps the offset of the two
monomial operands to the offset of the product monomial.
Note that a naively implemented lookup table becomes
rapidly unwieldy with increasing order. The actual imple-
mentation uses double indirection, avoids duplicate entries
as well as entries where which exceed the maximum order
of the computations.

Rather than directly allocating terms present in the re-
sult, the multiplication algorithm accumulates terms in a
permanent pre-ordered “scratch pad”, essentially a work
area containing slots for all possible monomials. Once
monomial multiplications have been exhausted, only non-
zero terms present in the scratch pad are copied in order
into a new Jet.

Other Operations While addition and subtraction are
essentially the same, the division algorithm differs substan-
tially. However, division, as well as all other basic math-
ematical operations can be reduced to a sequence of ad-
ditions and multiplication. Since the later both preserve
monomial ordering, it follows that all operations preserve
monomial ordering.

PERFORMANCE CONSIDERATIONS

Keeping in mind that operations involving Jets involve
manipulation, allocation and de-allocation of very large
numbers of individual monomials, maximizing efficiency
hinges on a few principles: (1) avoid searching for specific
monomials (2) make the cost of comparing (the exponents
of) two monomials as low as possible (3) reduce as much as
possible the cost (both in terms of cpu cycles and memory
utilization) of copying Jets (4) reduce as much as possible
the costs of allocating and deallocating Jets.

(1) and (2) are neatly taken care of by the indirect mono-
mial indexing scheme: two monomials can be compared
by comparing their respective offset within an ordered ta-
ble. Item (3) deserves some discussion.

While the need to explicitly copy variables in the course
of a computation is obvious, in the context of over-
loaded operators, a specific issue arises: implicit temporary
copies. The issue can be illustrated with the help of two

THPAN113 Proceedings of PAC07, Albuquerque, New Mexico, USA

05 Beam Dynamics and Electromagnetic Fields

3490

D05 Code Developments and Simulation Techniques

1-4244-0917-9/07/$25.00 c©2007 IEEE

simple examples. First, consider the addition of two jets.
The implementation of the addition operator accumulates
the sum of both operands in new Jet variable which must
then be returned to the caller. Typically, an anonymous
temporary copy of the local variable (in short, a temporary),
is returned. In situations involving complex expressions,
many temporaries can be implicitly allocated and deallo-
cated. Consider

Y = X1 + X2 + X3 + X4 (2)

where Y, X1, ..., X4 are Jets. In C++, this expression
is evaluated as X1 + (X2 + (X3 + X4)). The result of
(X3 + X4) is a temporary, which is subsequently added to
X2 and so forth. Clearly, the temporaries are not necessary,
and it would be more efficient to accumulate the sum of all
three vectors X, Y and Z directly into V . The compiler
must generate temporaries because it can make no a-priori
assumptions about the nature of the operation performed
by operator “+”. Interestingly, this behavior accounts for
much of the folklore about the better performance of For-
tran in scientific computing. Various methods exists that
mitigate almost entirely this “complex expression tempo-
rary problem”; some involve compile-time template meta-
programs, others involve run-time expression trees in con-
junction with delayed evaluation. In principle, these tech-
niques can be applied to Jet computations. However, the
additional code complexity introduced is significant.

An important observation is that temporaries are read-
only copies. Much of the cost of copying can be elimi-
nated through the use of reference counting. In mxyzptlk,
Jets are implemented using the pointer-to-implementation
(pimpl) idiom. In a nutshell, Jet operations are dispatched
to reference-counted smart pointers. For a read-only Jet,
the cost of a copy reduces to that of incrementing a counter
and copying a single pointer. Note that the pimpl idiom
has significant advantages over raw pointer manipulations:
(i) there is no object ownership ambiguity (ii) Jets have
value semantics and memory is automatically de-allocated
(if necessary) whenever a Jet goes out of scope.

To close this discussion, we must mention that for those
situations where a Jet deep copy (that is, a copy involv-
ing all terms) cannot be avoided, mxyzptlk uses a special-
ized fixed-size block allocator for JLterms. The cost of
a de-allocation is made trivial through a recycling strategy
which involves assigning deleted Jets to a special “recy-
cling pool”.

It is not possible to provide additional details here. Suf-
fice it to say that a profiling tool reveals that in complex
computations involving Jets, memory allocation typically
accounts for less than 1% of the CPU time, even though
the JLterm allocation overwhelmingly dominates (by or-
ders of magnitude) in terms of number of function calls. In
fact, just as one would expect, the multiplication operation
consumes most of the CPU cycles, typically about 75%.

In closing, it is worth mentioning that sparsity and the
concept of monomial ordering based on weight and lex-
icographical order have been present in mxyzptlk since

the beginning. Reference counting was partially introduced
many years ago but was not implemented in terms of mod-
ern idioms and other recent advances. Although some
specifics differ, our use of table-driven monomial multi-
plication was influenced by previously published work e.g.
Ref. [4], which credits the idea to A. Dragt from the Uni-
versity of Maryland.

BENCHMARKS

Table 1 shows timing results for a sample computa-
tion that should convey a sense of the performance of
mxyzpltlk. In this example, a one turn, n-th order phase-
space map for a ring comprised of about 300 elements, in-
cluding combined-function magnets, quadrupoles and sex-
tupoles. All computations are performed on a standard
single-core 3.0 GHz Pentium 4 CPU. Remarkably, at first
order, performance matches what one would expect from a
conventional matrix-based code.

Table 1: Timing measurements
Order Monomials CPU time [s]

1 7 0.08
2 28 0.52
3 84 1.42
4 210 4.37
5 462 16.08
6 924 51.35
7 1716 146.76
8 3003 367.58

CONCLUSION

mxyzptlk is now a competitive AD engine. In addition
to good performance, it offers: (1) a reasonable and dy-
namic memory footprint (no a-priori allocation) (2) a fully
native C++ implementation that does not involve a special-
ized syntax and the associated overhead (3) a compact and
maintainable implementation, resulting from extensive us-
age of templates and modern idioms.

REFERENCES

[1] L. Michelotti, “Differential Algebras Without Differentials:
An Easy C++ Implementation”, PAC 1989 Chicago.

[2] L. Michelotti, “A C++ Hacker’s Implementation of Auto-
matic Differentiation”, Automatic Differentiation of Algo-
rithms Theory, Implementation, and Application, SIAM,
Philadephia, 1991.

[3] R.L. Anderson and N. H. Ibragimov, “Lie-Bäcklund Trans-
formations in Applications”, ”SIAM Studies in Applied
Mathematics, Philadelphia, 1979.

[4] S. G. Shasharina and J. R. Cary, ”Efficient Differential Alge-
bra Computations”, PAC 1999 New-York, p. 377.

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAN113

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D05 Code Developments and Simulation Techniques

3491

