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Abstract
We investigate Fourier spectral time-domain simula-

tions applied to wake field calculations in two-dimensional
cylindrical structures. The scheme involves second-order
explicit leap-frogging in time and Fourier spectral approx-
imation in space, which is obtained from simply replacing
the spatial differentiation oprator of the YEE scheme by
the Fourier differentiation operator on nonstaggered grids.
This is a first step toward investigating high-order compu-
tational techniques with the Fourier spectral method, which
is relatively simple to implement.

FORMULATIONS
We study beam dynamics in two-dimensional conduct-

ing cavity structures. The governing equations and the nu-
merical scheme are as follows.

Maxwell’s Equations
We begin with the Maxwell equations:

µ
∂H

∂t
= −∇× E, ε

∂E

∂t
= ∇×H − J (1)

∇ · E =
ρ

ε
, ∇ ·H = 0, (2)

where the current source J is defined for an on-axis Gaus-
sian beam moving in the x-direction:

J = cexρ(y)ρ(x− ct), ρ(x) =
1

σx

√
2π

e

(
− x2

2σ2
x

)
. (3)

Numerical Scheme
We define the computational domain on [−Lx, Lx] ×

[−Ly, Ly] and the grid points as follows.

xi = −Lx +
2Lxi

Nx
(i = 0, ..., Nx − 1) (4)

yj = −Ly +
2Lyj

Ny
(j = 0, ..., Ny − 1) (5)

We approximate solutions to Maxwell’s equations based on
Fourier interpolation polynomials [3, 4, 5] by defining the
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approximate solution as

Ēl,k =
Nx−1∑
i=0

Ny−1∑
j=0

Ei,jL(xl)L(yk), (6)

where

L(x) =
1

Nx
sin

[
Nx

x− xi

2

]
cot

[
x− xi

2

]
. (7)

Then, the Fourier differentiation matrix is given as

(D̄x)l,i =
d

dx
Li(x)|xl

=
(−1)i+l

2
cot

[
(x− xi)

2

]
(8)

for i 6= l and (D̄x)l,i = 0 for i = l. In a sim-
ilar manner, D̄y can be defined. If we use the ten-
sor product to define the two-dimensional spatial deriva-
tives Dx = I ⊗ D̄x and Dy = D̄y ⊗ I , where
I represents the identity matrix, and if we represent
Ēn

x = [(Ex)00, (Ex)10, ..., (Ex)ij , ..., (Ex)Nx−1Ny−1]T at
the time level tn = n∆t with material properties, ε̄ and µ̄,
on grids, our scheme is

ε̄
Ē

n+ 1
2

x − Ē
n− 1

2
x

∆t
= DyH̄n

z − J̄n
x (9)

ε̄
Ē

n+ 1
2

y − Ē
n− 1

2
y

∆t
= −DxH̄n

z (10)

µ̄
H̄n+1

z − H̄n
z

∆t
= DyĒ

n+ 1
2

x −DxĒ
n+ 1

2
y . (11)

Initial Conditions
To describe the electromagnetic fields in the presence of

the Gaussian beam for the initial time step, we first solve
the Poisson equation in one dimension at the cross section
of the initial beam position

∇2Φ1D(y) = −ρ1D(y)
ε

(12)

and get the one-dimensional electric field at the cross sec-
tion

E1D = −∇Φ1D(y). (13)

Then, the initial electric field E in two dimensions is as-
signed along the x-direction by using the one-dimensional
electric field E1D scaled by the initial Gaussian distribu-
tion ρ(x) as

E(y, x) = E1D(y)ρ(x). (14)
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Boundary Conditions
We apply the uniaxial perfectly matched layer (UPML)

boundary condition in the x-direction and the perfectly
electric conducting (PEC) boundary condition in the y-
direction.

UPML formulations in 3D [8] are defined as follows:

∂Hz

∂y
− ∂Hy

∂z
=

∂Dx

∂t
+

1
ε
σyDx (15)

∂Hx

∂z
− ∂Hz

∂x
=

∂Dy

∂t
+

1
ε
σzDy (16)

∂Hy

∂x
− ∂Hx

∂y
=

∂Dz

∂t
+

1
ε
σxDz, (17)

where σx = −(x/d)m(m + 1)ln(R)/2ηd, denoting d,
x, m, R, and η for PML size, PML depth, polynomial
grading, reflection error, and impedance, respectively. In
UPML, the components of E are updated by

ε

[
∂Ex

∂t
+

σz

ε
Ex

]
=

∂Dx

∂t
+

σx

ε
Dx (18)

ε

[
∂Ey

∂t
+

σx

ε
Ey

]
=

∂Dy

∂t
+

σy

ε
Dy (19)

ε

[
∂Ez

∂t
+

σy

ε
Ez

]
=

∂Dz

∂t
+

σz

ε
Dz. (20)

A similar formula is used in UPML to update the compo-
nents of H . In our simulations we apply UPML only in the
x-direction by choosing σy = σz = 0.

PEC boundary conditions are assigned at the boundaries
in the y-direction by setting the values for the E and H
components as zeros.

COMPUTATIONAL RESULTS
We demonstrate the profiles of wake fields in cylindri-

cal tube and pillbox cavity structures in two dimensions.
We then discuss the problems we encounter and possible
solutions for accurate simulations.

Wake Fields
Figure 1 shows the electric field profile for the y-

component on [−7.5, 7.5]× [−2, 2] at a time step=60 with
∆t = ∆y/10 and initial beam position at x = −3.5. As
we expect for the cases with no change in the structures,
we observe no significant reflection from the conducting
boundary, and the beam is moving with no significant dis-
tortion. However, we observe dissipation around the con-
ducting boundary as the beam moves along the positive di-
rection in x.

We carried out simulations of the pillbox cavity, as
shown in Figure 2. Figure 3 shows the electric field pro-
file for the y-component on [−7.5, 7.5] × [−2, 2] for the
pillbox configuration in Figure 2. We observe strong oscil-
lations at the corner of the cavity as soon as the beam enters
the cavity. These oscillations remain until the beam passes
throughout the cavity. This result was not observed from
the results reported in [1, 2, 7].

Figure 1: Electric field for the y-component on a tube mesh
in 2D.

Figure 2: Pillbox cavity structure with PEC region (darker
area) and vacuum (brighter area) on [−7.5, 7.5] × [−2, 2];
ingoing and outgoing tube radius=1.

Discussion

We plan to continue the study of the dissipation and os-
cillation using the Fourier spectral scheme. We have a way
to resolve the problems arising with oscillations when us-
ing Fourier spectral time domain simulations. In particu-
lar, one can apply the Gegenbauer or the Padé [5, 6] re-
construction techniques on the Fourier simulation data to
remove the unphysical oscillations. Considering wake po-
tential calculation, however, we need to carry out the re-
construction procedures every time step when wake po-

Figure 3: Electric field for the y-component on a pillbox
configuration in 2D.
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tential calculations are carried out over the time integra-
tions. The reason is that accurate field values at each time
to calculate the wake potential and these avoid using con-
taminated data from the oscillations. In order to reduce
the computational cost for the reconstructions at every step
where one has to provide reasonable field values, one can
carry out reconstructions locally around the line path where
one has to obtain the wake potential. For the pillbox con-
figuration in Figure 2, one can get wake potential along
the path y = 1 with two-dimensional reconstructions on
[−s, s]× [1−∆, 1 + ∆] for s = 5σx and some small ∆.

CONCLUSIONS
We demonstrated Fourier spectral time domain simula-

tions for wake field calculations on cylindrical tube and
pillbox cavity structures. We observe dissipations and un-
physical oscillations depending on the structures in the
Fourier spectral simulation data. Further study will be car-
ried out on how to overcome the difficulties with dissipa-
tions and numerical oscillations. We also plan to investi-
gate possible enhancemance of its performance on the same
grid base with the 2D wake field calculation code ABCI [2].
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