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Abstract 
Implementation of low energy injection schemes in the 
race-track microtron (RTM) design requires a better 
understanding of the longitudinal beam dynamics. 
Differently to the high energy case a low-energy beam 
will slip in phase relative to the accelerating structure 
phase. This phase slip is due to various features of the 
beam dynamics, in particular it is caused by the fact that 
at the first orbits the relativistic factor of the electrons 

1<β . A phase shift may also be caused by the 
deformation of the particle trajectories due to the 
complicated magnetic field profile or simply by the fringe 
field in the end magnets.  In article [1] we proposed the 
concept of equilibrium or synchronous particle for the 
case of non-relativistic energies in RTMs. An analytic 
approach for the description of the synchronous phase slip 
was developed and explicit, though approximate, 
formulas which allow to define the equilibrium injection 
phase and to fix the parameters of the accelerator were 
derived. In the present article we generalize this 
formalism for the case of non-trivial profile of the 
magnetic field in the RTM end magnets. Analytic 
formulas are derived, their accuracy can be improved by 
applying certain algorithm.  Two examples of application 
of this formalism for fixing the injection phase and RTM 
parameters are given.  

INTRODUCTION 
  It is well known that race-track microtrons, combining 
properties of a linear accelerator and a circular machine, 
are optimal as a source of electron beam for applications 
which require modest beam current and relatively high 
beam energy [2]. Because of the large energy gain per 
turn and the phase slip both in the drift space between the 
end magnets and in their fringe field, the analysis of the 
longitudinal dynamics in RTMs turns out to be quite 
complicated. Though there exist codes (RTMTRACE [3] 
and others) which permit to simulate the beam dynamics 
with sufficient precision, little analytic studies have been 
done so far. However, when designing a new accelerator 
with beam parameters quite different from those of 
known RTMs it is important to have a reliable  model of 
longitudinal motion in order to gain a good understanding 
of the machine behaviour and choose and optimize its 
parameters. In article [1] we studied the phase slip effect 
and introduced a concept of synchronous particle with a 
relativistic factor 1<β  for the RTM model without 

fringe field in the end magnets. Here we generalize this 
result to the case of an arbitrary profile of the magnetic 
field at the end magnet entrance. Some numerical 
examples illustrating how our approach can be used for 
the accelerator design are presented.  
 

LONGITUDINAL DYNAMICS  
 

Let us consider an electron RTM with the vertical 
component of the magnetic field induction in the end 
magnets described by a function )(zB . Without lost of 
generality we suppose that the field is absent, 0=B , for 
z<0 and that the z-axis is directed inside the magnet. An 
example of the function )(zB  of a magnetic system with 
inverse and main poles with fringe field included is 
shown in Fig. 1. For the sake of simplicity we will assume 
that the main pole has a region of constant magnetic field, 
i.e. there exists some 00 >z   such that 

constBzB == 0)(  for 0zz > . We also introduce the 
transversal horizontal component of the vector potential 

)(zA such that dzdAzB /)( =  

 
Figure 1. Magnetic field as a function of z in a magnetic  
                system with inverse pole.  
 
Let l be the straight section length, i.e. the separation 
between the end magnet entrances which coincide with 
the point z=0 (see Fig. 1) in the local coordinate system of 
each magnet.   We suppose that the maximum energy gain 
in the linear accelerating structure (AS) is maxEΔ  and 
that the AS is modelled by an infinitely thin accelerating 
gap.  As usual, the longitudinal dynamics of an individual 
particle is described by its energy E and phase ϕ  with 
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respect to the accelerating voltage. Let ),( nn Eϕ  be the 

variables at the nth turn at the entrance of the AS. By 0ϕ  

and 0E we denote the phase and energy at the beginning 
of acceleration. We would like to note that in most of 
pulsed RTM designs the electrons after the injection and 
first passage through the AS are reflected back by the end 
magnet fringe field and/or an additional dipole. In this 
case 0E  is not the energy of injection but the energy 
before the second passage through the AS.    

Let us recall that an RTM is designed in such a way 
that the so called equilibrium or synchronous particle 
moving with the velocity cv =  satisfies the condition of 
resonance motion:   
                  ( ),)1( −+= nTT RFns νμ   (1) 
i.e. the time of the nth revolution Tns  of such particle must 
be a multiple of the period of the RF field TRF, where μ  
and ν  are positive integers defining the mode of 
operation of the machine [2]. We will call such particle 
ultra-relativistic, or asymptotic, synchronous particle. Its 
longitudinal dynamics is characterized by a synchronous 
phase sϕ , so that its energy gain per turn is equal to 

ss EE ϕcosmaxΔ=Δ . The energy snE ,  and phase 

sn,ϕ of the equilibrium particle at the nth turn are given 
by the following relations [1]:  

[ ]2/)1(2,

,0,

−++=
Δ+=

nn
EnEE

ssn

sssn

νμπϕϕ
                 (2) 

Let us consider the more common case when at the 
beginning of the acceleration the beam has 

1/ <= cvβ . The general expression for the time of the 

nth revolution of a particle with energy nE  is given by  
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where )(Eβ  is the relativistic factor β  understood as a 
function of energy E and L(E) is the length of the electron 
trajectory in the end magnet. To calculate this latter factor 
we introduce first the maximum penetration )(max Ez of 
the particle in the end magnet which is defined from the 
condition )()( max EpzAe z= , where zp  is the 
longitudinal particle momentum at the entrance of the 
magnet. Calculating the path length of a charged particle 
moving in a magnetic field characterized by the potential 
A(z) one gets  
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is the orbit radius of an electron of energy E inside the 
region of constant magnetic field 0BB =  and λ  is the 
RF field wavelength.  It is clear that Tn cannot satisfy 
resonance condition (1) with integer μ  and ν  for all n. 
Nevertheless, there exists a phase space trajectory that 
approaches the ultra-relativistic synchronous one 
asymptotically.  

The recursion relations between ),( nn Eϕ  and 

),( 11 ++ nn Eϕ  are given by  
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with the phase advance given by the function 

)(
)(

8
)(

4)( EL
EE

lEK
λβ

π
λβ

π += .              (7) 

Of course, RFnn TTEK /2)( π=  with Tn given by Eq.  
(3). As the energy grows, the longitudinal phase 
coordinates get closer to those of the asymptotic 
synchronous particle, therefore it is reasonable to 
characterize ),( nn Eϕ  with respect to the asymptotic 

synchronous trajectory ),( nsns Eϕ  described by formulas 
(2). To calculate the difference between these two 
trajectories we introduce the dimensionless parameter 

snsn EE ,/Δ=ε  which decreases with the growth of n .  

Expanding function (7) in powers of nε  and applying the 
technique developed in Ref. [1] we obtain the following 
leading approximation to the solution of system of 
difference equations (6) without synchrotron oscillations:  
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where we denoted sEmc Δ= /2κ  and m is the particle 
rest mass.  The coefficient  
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and the effective drift space length 0
~ zll Δ+= , where 

00 /)(22 BzAzz BB −=Δ , characterize the concrete 

magnetic field profile. In their definition enters Bz , an 
arbitrary point in the region of constant field, i.e. 

0zzB > . It can be proved that in fact the values of 

2d and 0zΔ , and therefore the final result, do not depend 
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on the particular choice of Bz .  One can easily show that 

2/)()( 0max zEREz Δ+= .  We would like to note 
that following a certain algorithm developed in [4] terms 
of higher orders in nε  in expansions (8), (9) can be 
calculated.   
          Solution (8), (9) defines the synchronous trajectory 
corresponding to the asymptotic synchronous phase sϕ  in 
the case of RTMs with low energy injection. This notion 
was first introduced in Ref. [1] and is defined as the 
particle with initial conditions ),( 00 Eϕ such that in the 
limit ∞→n  it approaches the asymptotic (ultra-
relativistic) synchronous  particle with the phase space 
coordinates ),( nss Eϕ , i.e. sn ϕπϕ →)2(mod ,  

nsn EE → . The phase shift of the synchronous particle 
follows the well determined pattern described by Eq. (8). 
We would like to note that a general phase trajectory in 
addition to the terms in Eqs. (8), (9) includes synchrotron 
oscillations as it is described in Refs. [1,2].  
 

FIXING THE INJECTION PHASE IN 
CASE OF END MAGNETS WITH THE 

INVERSE POLE   
 
The formulas obtained here can be applied to the 
determination of the RTM parameters, in particular of the 
injection phase 0`ϕ  of the synchronous trajectory. To fix 
such trajectory two parameters must be adjusted. As such 
parameters of tuning we will take 0ϕ  and the distance 

between the end magnets l . This is a common situation 
in RTM designs since the injection energy E0 is usually 
fixed by the electron gun and accelerating structure 
voltages. For the sake of illustration let us suppose that 
formulas (8),(9) are exact enough already after the first 
orbit (generalization to higher orbits is straightforward). 
The phase and energy ),( 11 Eϕ on one hand are given by 
Eqs. (8),(9) and on the other hand by recurrence relations 
(6) with 0=n . These relations define a system of two 
equations with respect to 0ϕ  and l . Here 1ε and 

sE ,1 must be understood as functions of  l . Details of this 
procedure are explained in Ref. [4]. As an illustration let 
us consider two examples of calculation of the 
synchronous trajectory for an RTM with λ=5 cm, ν=1, 
ΔEmax=2.08 MeV, ϕs=16° and with the end magnet with 
inverse pole (see Fig. 1) whose magnetic field is 
described by  
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for 00 zz << . In accordance with our suppositions 

0)( =zA for   0<z    and 

)4()( 11200 hBzBzBzA +−= for 0zz >  
Let us note that magnetic systems with the main and 
inverse poles are used quite widely in modern RTMs.  In 
what follows we will use the values 1.010 == hh cm, 

75.01 =z cm, 22 =z cm, 010 3.0,T83.0 BBB == of 
the parameters of field (11) and potential (12).  
Example 1.  E0=12.536 MeV, 17=μ   

              The solution gives 12.4)/( =thl λ  and o27.40,0 =thϕ .   

In this case 14.01 ≈ε .  
Example 2.  E0=2.536 MeV, 12=μ .  

   The values of λ/l  and ϕ0 obtained from the system of 
equations are 99.3)/( =thl λ , °= 17.90,0 thϕ , so that 

the value  4.01 ≈ε .    
       For the sake of comparison we present the results 

from Ref. [1] for the same values of 0E and μ  but in 
the case of an end magnet with constant field 

T83.0=B without inverse pole and fringe field.   
 Example 1: 86.4)/( =thl λ , °= 15.60,0 thϕ  

 Example 2: 84.4)/( =thl λ , °−= 0.79,0 thϕ  
  

CONCLUDING REMARKS 
We have derived analytic formulas that describe the phase 
slip effect in the RTM longitudinal dynamics in the case 
of arbitrary magnetic field profile in the end magnets. We 
have shown that being applied to the design of RTMs 
they allow to define the generalized synchronous 
trajectory, at least as a first approximation. The accuracy 
of the formulas depends on the value of the parameter nε  
at the orbit where the analytical method is applied. Their 
precision can be increased by including terms with higher 
powers in nε .  We would like to note that, in fact, the 
results are scale invariant, i.e. dimensionless 
combinations λ/l , ,/1 λz  etc. only. Further details will 
be published elsewhere.  
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