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Abstract

The Napoly integral for the wake potential calculations
in the axisymmetric structure is a very useful method be-
cause the integration of Ez field can be confined in a finite
length instead of the infinite length by deforming the inte-
gration path, which reduces CPU time for the accurate cal-
culations. However, his original method could not be ap-
plied to the transverse wake potentials in a structure where
the two beam tubes on both sides have unequal radii. In
this case, the integration path needs to be a straight line
and the integration stretches out to an infinite in principle.
We generalize the Napoly integrals so that integrals are al-
ways confined in a finite length even when the two beam
tubes have unequal radii, for both longitudinal and trans-
verse wake potential calculations. The extended method
has been successfully implemented to ABCI code.

INTRODUCTION

Calculating wake potentials is an important issue in the
design of accelerators. Napoly et. al.[1, 2] originally devel-
oped the method to calculate wake potentials, where the in-
tegration along the longitudinal direction only comes from
the path across the cavity gap. This simplification is essen-
tial for the numerical calculations, for instance, for large
structures, for short bunches et. al. to reduce computer
memory and CPU time.

However, in their technique the radii of the chamber
must be equal on both sides of the structure, for the cal-
culation of wake potentials of higher than the dipole mode.
In this paper, we generalize their method to the case that
both sides of the structure can be unequal for any mode.

THE BASIC CONCEPT AND
PREPARATIONS

The integration of vector along the closed path is zero,
when the one-form which is defined by the vector is closed.
This feature is very useful to deform the path of integration,
calculating wake potentials. Following Napoly et. al.[2],
we introduce one-form and represent some identities to pre-
pare for calculating wake potentials in the next section.

Let us consider the axisymmetric cavity as shown in
Fig.1. We use the cylindrical coordinate (r, θ, z). From
now on, we assume that the radius of the beam tube of the
downstream side aout is smaller than that of the upstream
side ain, for simplicity (This constraint is removed in the
final expression of the wake potential, i.e. Eq.(25)).
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Figure 1: The cavity and the integration path

Given �r0 = (r0, θ0 = 0), which is the transverse coordi-
nates of the source particle, the electromagnetic fields are
expanded as follows,

(Er, Bθ, Ez)(r, θ, z, t)=
∞∑

m=0

(er, bθ, ez)(m)(r, z, t) cosmθ,

(1)

(Br, Eθ, Bz)(r, θ, z, t)=
∞∑

m=1

(br, eθ, bz)(m)(r, z, t) sin mθ.

(2)

The θ-dependence of the solutions is the consequence of
the azimuthal symmetry of the system. The electromag-
netic fields can be decomposed as E = E (s) + E(r) and
B = B(s) + B(r), where (E(s), B(s)) are the source fields
and (E(r), B(r)) are the radiated fields (which are the so-
lutions of homogeneous Maxwell equations).

Let us introduce the following definition for a generic
field:

φ̄(z, s) ≡ φ(z, t(z, s)), (3)

in such a way that,

∂zφ̄(z, s) = (∂z + ∂ct)φ(z, t(z, s)), (4)

where s is the distance behind a given origin z0 = ct in the
exciting bunch, and t(z, s) = (z + s)/c.

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAN046

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D05 Code Developments and Simulation Techniques

3333



By using this notation, we denote the closed one-forms
as,

S(m) =

(rm[ē(r)
r + cb̄

(r)
θ − ē

(r)
θ + cb̄(r)

r ](m), rm[ē(r)
z + cb̄(r)

z ](m)),
(5)

D(m) =

(r−m[ē(r)
r +cb̄

(r)
θ +ē

(r)
θ −cb̄(r)

r ](m), r−m[ē(r)
z −cb̄(r)

z ](m)),
(6)

in (r, z)-plane [2]. We should notice that these one-forms
are composed of only radiated fields.

In order to deform the integration contour which appears
in the wake potential, the several useful relations should
be introduced in advance. First of all, we need the asymp-
totic expression of the radiated fields for z → ±∞. If we
assume that the source field is defined by,

φ(s)(r, θ, z, t)

=
Q

2πε0
λ(s)

[
log

(
aout

r>

)
+

∞∑

m=1

cosmθ

m

(
r<

r>

)m
]

,

(7)

A(s)
z (r, θ, z, t) = φ(s)(r, θ, z, t)/c, (8)

where r> = sup(r, r0) and r< = inf(r, r0), the radiated
fields for z → ±∞ are given by,

lim
z→−∞ ē(r)

r (r, z, s) = − lim
z→−∞ ē

(r)
θ (r, z, s)

= lim
z→−∞ cb̄(r)

r (r, z, s) = lim
z→−∞ cb̄

(r)
θ (r, z, s)

=
Q

2πrε0
λ(s)

∞∑

m=1

(
rr0

a2
in

)m

, (9)

lim
z→−∞ ē(r)

z (r, z, s) = lim
z→−∞ cb̄(r)

z (r, z, s) = 0, (10)

lim
z→∞ ē(r)

r (r, z, s) = − lim
z→∞ ē

(r)
θ (r, z, s)

= lim
z→∞ cb̄(r)

r (r, z, s) = lim
z→∞ cb̄

(r)
θ (r, z, s)

=
Q

2πrε0
λ(s)

∞∑

m=1

(
rr0

a2
out

)m

, (11)

lim
z→∞ ē(r)

z (r, z, s) = lim
z→∞ cb̄(r)

z (r, z, s) = 0. (12)

Applying these expressions to the loop integration of
Eqs.(5) and (6), one can obtain the following identities:

∫

Lr

D(m)(r, z, s)dl =
∫

C
D(m)(r′, z′, s)dl′, (13)

∫ ∞

−∞

[
ē(r)

z (r, z, s)
](m)

dz = −
∫ ∞

−∞

[
cb̄(r)

z (r, z, s)
](m)

dz

− Qλ(s)rm
0 rm

mπε0

(
1

a2m
in

− 1
a2m

out

)
, (14)

∫

D̄
S(m)[ain, z, s]dl =

∫

D
S(m)[aout, z, s]dl

−
∫ ain

aout

drrm 2Q

πrε0
λ(s)

(
rr0

a2
in

)m

+
∫ ain

aout

drrm
[
ē(r)

r + cb̄
(r)
θ − ē

(r)
θ + cb̄(r)

r

](m)
∣∣∣∣
z=z1

,

(15)
∫

D̄
D(m)[ain, z, s]dl =

∫

D
D(m)[aout, z, s]dl

+
∫ ain

aout

drr−m
[
ē(r)

r + cb̄
(r)
θ + ē

(r)
θ − cb̄(r)

r

](m)
∣∣∣∣
z=z1

,

(16)

where rin and rout are the end radii of the contour C ex-
pressed in the upper figure of Fig.1 and the contour D̄ and
D are described in the lower figure of Fig.1. The positions
z1 and z2 specify the contour C̄ denoted in Fig.1.

When the contour D is chosen on the axis of the tube in
Eq.(16), we obtain another relation:

∫ z1

−∞
dzc

[
b̄(r)
z

](m)
∣∣∣∣
r=ain

=

−
∫ ain

0

drrm 2Q

πrε0

λ(s)
am

in

(
rr0

a2
in

)m

+
∫ ain

0

dr
rm

am
in

[
ē(r)

r + cb̄
(r)
θ − ē

(r)
θ + cb̄(r)

r

](m)
∣∣∣∣
z=z1

.

(17)

By using Eqs.(15)-(17), we find that the integration of e z

over z between −∞ and z1 can be replaced as,

2
am

out

∫ z1

−∞
dz [ez]

(m)

∣∣∣∣
r=aout

=
(

1
a2m

out

− 1
a2m

in

)

×
∫ ain

0

drrm [er + cbθ − eθ + cbr]
(m)

∣∣∣∣
z=z1

+
2Q

mπε0
λ(s)rm

0

(
1

a2m
out

− 1
a2m

in

)

−
∫ ain

aout

dr
rm

a2m
out

[er + cbθ − eθ + cbr]
(m)

∣∣∣
z=z1

−
∫ ain

aout

dr
1

rm
[er + cbθ + eθ − cbr]

(m)
∣∣∣
z=z1

. (18)

We should notice that the integration from −∞ to z1 is
confined in the finite length in Eqs. (17) and (18).

THE WAKE POTENTIAL FOR M ≥ 1

The expression for the m = 0 longitudinal wake poten-
tial was already derived by Napoly et al themselves [1, 2].
This expression can be applied to the calculation of the
wake potential for any type of structure. They also derived
the wake potentials for m ≥ 1, only when the radii of the
chamber was equal on both sides of the structure. In this
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section, we generalize the expression of the m(�= 0)-th or-

der longitudinal wake potential W
(m)
z (r, θ, s) to the case

that the two beam tubes have unequal radii.
The longitudinal wake potential is defined as,

W (m)
z (r, θ, s) ≡ − 1

Q

∫ ∞

−∞
dzEz(r, θ, z, t(z, s)), (19)

where Q is total charge, which is characterized by a longi-
tudinal charge distribution λ(s) normalized as,

∫ ∞

−∞
λ(s)ds = 1. (20)

The transverse wake potential, which is defined as,

W
(m)
⊥ (r, θ, s)≡− 1

Q

∫ ∞

−∞
dz(E⊥+v×B)(r, θ, z, t(z, s)),

(21)

can be derived from the longitudinal one by applying the
Panofsky-Wenzel theorem [3]:

∂sW
(m)
⊥ (r, θ, s) = ∇⊥W (m)

z (r, θ, s). (22)

Since the longitudinal wake potential can be rewritten by
the integration of the radiated field [ē(r)

z ](m), we can easily
deform the integration path by using the property of the
closed one-forms. By using Eqs.(13) and (14), Eq.(19) is
described as follows,

W (m)
z (r, θ, s) = −cosmθ

2Q
rm×

[∫

C̄
D(m)(r′, z′, s)dl′ +

1
a2m

out

∫

C̄
S(m)(r′, z′, s)dl′

]

= −cosmθ

2Q

rm

am
out

×
{∫

C̄
dz′

[
ē(r)

z

(
am

out

r′m
+

r′m

am
out

)
−cb̄(r)

z

(
am

out

r′m
− r′m

am
out

)](m)

+
∫

C̄
dr′

[
(ē(r)

r + cb̄
(r)
θ )

(
am

out

r′m
+

r′m

am
out

)

+(ē(r)
θ − cb̄(r)

r )
(

am
out

r′m
− r′m

am
out

)](m)
}

. (23)

It is necessary to rewrite Eq.(23) by the real fields instead
of the radiated fields. Since the source field is calculated
by Eqs.(7) and (8), the longitudinal wake potential is ex-
pressed by

W (m)
z (r, θ, s) = −cosmθ

2Q

rm

am
out

×
{∫

C̄
dz′

[
ez

(
am

out

r′m
+

r′m

am
out

)
− cbz

(
am

out

r′m
− r′m

am
out

)](m)

+
∫

C̄
dr′

[
(er + cbθ)

(
am

out

r′m
+

r′m

am
out

)

+(eθ − cbr)
(

am
out

r′m
− r′m

am
out

)](m)
}

. (24)

In C̄-integration in Eq.(24), the longitudinal coordinate z
substantially moves from−∞ to z2. This integration needs
to be confined in a finite length. Actually, the component
which comes from the path from the point (r = aout, z =
−∞) to (r = aout, z = z1) can be replaced by the another
expression by using Eq.(18). The general expression of the
longitudinal wake potential (which can be applied to not
only the case aout ≤ ain but also to the case aout ≥ ain)
is given by,

W (m)
z (r, θ, s) = −cosmθ

2Q
rm

×
{

Q

πε0
λ(s)

rm
0

m

(
1

a2m
out

− 1
a2m

in

)

+
∫ z2

z1

dz

(
[ez − cbz]

(m)

am
0

+
am
0 [ez + cbz]

(m)

min(a2m
in , a2m

out)

)

+
(

1
a2m

out

− 1
a2m

in

)∫ a0

0

dr′r′m[er+cbθ−eθ+cbr](m)

∣∣∣∣
z=zj

+
∫ a0

ain

dr′
[er + cbθ + eθ − cbr](m)

r′m

∣∣∣∣
z=z1

+
∫ a0

ain

dr′
r′m[er + cbθ − eθ + cbr](m)

a2m
in

∣∣∣∣
z=z1

+
∫ aout

a0

dr′
[er + cbθ + eθ − cbr](m)

r′m

∣∣∣∣
z=z2

+
∫ aout

a0

dr′
r′m[er + cbθ − eθ + cbr](m)

a2m
out

∣∣∣∣
z=z2

}
, (25)

where the radial size a0, which specifies the contour C̄, is
defined in the upper figure of Fig.1, the notation z j is z1 in
the case of aout ≤ ain and that is z2 in the case of aout ≥
ain.

This formula has been implemented to ABCI code [4].
The usefulness is examined in the reference [5] in this con-
ference.

SUMMERY

The integration path in the wake potentials can be de-
formed by using the closed one-form defined in (r, z)-
plane. This procedure generalizes Napoly integral for any
m and for any structure. The integration of Ez field over z
in an infinite length is replaced by that of electromagnetic
fields in a finite region (typically the cavity gap size).
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