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Abstract 
The advanced HESR lattice with two arcs having the 
identical layout and the different slip factors are 
developed. The conception of arcs with three families of 
quadrupole allows easy adjusting the imaginary transition 
energy in one arc and the real transition energy in another 
arc with the absolute value close to the beam energy in 
whole required region from 3.0 GeV to 14 GeV. The arcs 
have the special feature, when the high order non-
linearities are fully compensated inside of each arc, and 
therefore the dynamic aperture of the whole machine is 
conserved. We consider and compare two lattices with the 
same absolute value of transition energy: the current 
lattice with the negative momentum compaction factor in 
both arcs and the lattice having the negative and positive 
momentum compaction factors in different arcs 
correspondingly. Simultaneously we analyzed the 4 and 6 
fold symmetry arcs machine. It allows making the 
conclusion that the 4 fold symmetry lattice is more 
suitable to get the required slip factors. At the lowest 
energy 3 GeV, it is 54/ ÷≈realimag ηη  in the imaginary 

and the real arc correspondingly. For the higher beam 
energy this ratio is much bigger. 

INTRODUCTION 
To intensify the stochastic cooling process it is desirable 
to have the mixing factor between the pick-up and kicker 
as much as possible, and on the contrary, in the case of 
mixing between the kicker and pick-up we should try to 
make it smaller. This option can be realized, if the lattice 
has the different local optical features between the pick-
up – the kicker and the kicker – the pick-up.  

First the idea with different slip factors was proposed by 
Möhl [1,2]. Later many authors try to design such lattice, 
for instance [3, 4]. However, it makes more complicate 
lattice with large number of quadrupole and sextupole 
families and the need to have different optical settings at 
different energy. In result the dynamic aperture in such 
lattices usually is unacceptably small, and it has very 
difficult tuning. Therefore the compromise was to scarify 
some of the desired re-randomisation in order to avoid too 
much unwanted mixing. In the classical lattice the slip 
factors between pick-up and kicker pkη , kicker and pick-

up kpη  are similar, and by Möhl definition [2] the mixing 

factors are approximately equal. In papers [5] the 
comprehensive analysis of the stochastic cooling has been 
done in the HESR lattice with similar arcs and the 
negative momentum compaction factor ( itr 5.6=γ ) [6].  
In this paper we consider the advanced HESR lattice with 
the different slip factors pkη , kpη  in two arcs.  

ARCS WITH DIFFERENT SLIP FACTOR 
 

The HESR lattice consists of two arcs and two straight 
sections for the target and cooling facilities with 
circumference ~500÷600 m. The arcs have 6-fold (or 4-
fold) symmetry with super-periodicity S =6 (or 4). The 
phase advance per arc is 0.5, =yxν  (or 0.3, =yxν ) in both 

planes. Each super period consists of three FODO cells 
with 4 superconducting bending magnets (B=3.6T) and 
superconducting quadrupoles with G<60T/m (see fig. 1). 

 
Figure 1: HESR layout and half super-period 

The momentum compaction factor is one of the most 
important characteristics of any accelerator, which defines 

its transition energy. The slip factor, 22 /1/1 trγγη −=  

determined by transition trγ  and current γ  energy should 
be as high as possible in order to increase the micro-wave 
stability threshold. 

The most successful solution for the control of the 
momentum compaction factor has been done in [7] by 
simultaneously correlated curvature and gradient 
modulations. This lattice was taken in projects: the 
Moscow Kaon Factory, the TRIUMF Kaon Factory, the 
SSC Low Energy Booster, the CERN Neutrino Factory 
and in the under construction being main ring of the Japan 
Proton Accelerator Research Complex facility [8]. In the 
HESR lattice the same idea was taken [6]. Now in the 
advanced HESR lattice for the stochastic cooling we 
propose modifying the conception to provide the different 
slip factor in two arcs, but with conservation of sequence 
of all bending, focusing elements and drift between them. 

The proposed lattices meet the next requirements: 

- momentum compaction factor is about 1/ 2ν  in one arc 
(the slip factor close to zero, isochronous structure) and 

it is negative in another arc -1/ 2ν ; the total slip factor is 
enough high to provide a minimum spread in incoherent 
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frequencies for the longitudinal motion stability 
requirements;  

- dispersion free straight sections;  

- convenient method to correct the chromaticity by the 
sextupoles;  

- sufficiently large dynamic aperture after chromaticity 
correction. 

In common case the momentum compaction factor is 

determined from the integral ∫==
π

φ
φρ
φ

πγ
α

2

0

2 )(

)(

2

11
 d

D

t

, 

where )(sD  is dispersion function and )(sρ  is radius of 

curvature of equilibrium trajectory. To reach the required 
momentum compaction factor we make a correlated 
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 with superperiodicity Sarc. 

The radius curvature modulation nr  is provided by the 
missing magnet and it is done once and then is fixed. But 
the gradient modulation is variable parameter. Due to the 
FODO structure with mirror symmetry we realize 
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, and the lattice provides 

independent control of yx ,,να  by gradients of 

quadrupoles QF2, QF1 and QD correspondingly. 

In paper [7] the dispersion equation has been solved for 
case of both the quadrupoles gradients and the orbit 
curvature modulation: 
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where R  is average radius of machine, and ν  is 
horizontal tune. We can see that the sign of the 
momentum compaction factor depends on the term 

ν/1 kS− . The negative momentum compaction factor is 
reached in lattice with super-periodicity S and ν , when 

0/1 <− νkS  and it is determined by the kS -th harmonic.  

You can see this lattice has the remarkable feature: the 
gradient and the curvature modulation amplify each by 
other if they have opposite signs 0<⋅ kk rg , and on the 
contrary they can compensate each other when they have 
the same sign. We use just this feature to make arcs with 
the different slip factors. Hereinafter we will call the arc 
between the pick-up and the kicker in the line of beam as 

the real arc 0/1 2 >= tγα . Correspondingly the arc 
between the kicker and the pick-up will be called as the 

imaginary arc 0/1 2 <= tγα , because the transition 
energy is imaginary.  

First of all in both arcs we create the resonant curvature 
modulation by the usual method of the “missing magnet” 
in the center of the super-period. Then the quadrupole 
gradient is modulated with the opposite sign and the value 
determined by the gradient modulation when the ratio 

between them is  
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In principle the curvature modulation can be done much 
higher, but since in the real arc we need full compensation 
of the curvature modulation by the gradient modulation, 
and we would like to have the identical sequence of 
magneto-optic elements in both arcs, it is no desirable to 
increase the first of them. In the same time the gradient 
modulation is restricted by the parametric resonance of 
the envelope, when the second harmonic 2/ =νkS .  

Therefore from this point of view it is desirable to get 
such kg  when the ratio has a value:   
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Then the momentum compaction factor in the imaginary 

arc takes a meaning 2/1 να −≈kp , and the momentum 

compaction in the real arc is 2/1 να ≈pk . Thus, in such 

lattice we can make two arcs with the different slip 

factors: 2222 /1/1  ;/1/1 trkptrpk γγηγγη +=−= . In case 

νγ ≈  one of the arc is isochronous when the slip factor is 

0≈pkη , and another slip factor is 2/2 νη ≈kp .  

However together with this advantage of two different 
arcs for the stochastic cooling we lose the lattice mirror 
symmetry, which one makes the probability of the 
structure resonances excitation higher. Since any order 
resonance strength is determined by the integral 
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and, as we can see, the yx ,β -functions are the multipliers 

of field errors in the under integral expression, the 
resonance excitation probability is determined by the 
difference of yx ,β -function behaviour in the arcs. 

However, the developed lattice has the fundamental 
feature, since the equipments of both arcs are placed  
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absolutely identically. Figures 2 and 3 shows the xyx D,,β  

functions for the real and imaginary 4 fold symmetry arcs. 
In both arcs the dispersion is suppressed to have the zero-
dispersion straight sections. We can see from these 
figures the different momentum compaction factors are 
reached mainly due to the dispersion function change, and 
the β -function itself changes insignificantly.  

Two families of sextupoles are used for the chromaticity 
correction (see fig. 1). To provide in the first approach the 
sextupoles self-compensating we have to have the even 
number of the arc super-periods arcS  and as consequence 

the nearest to arcS the arc tune 1−= arcarc Sν . Then the 

phase advance between similar sextupoles of thi −  and 
( ) thSi arc −+ 2/  super periods equals 2/arcν . It means 
we have an exact condition for compensating each 
sextuplet’s non-linear action by another one. Thus, there 
are combinations: { } { } ;...7,8  ;5,6  ;3,4, =arcarcS ν .  

 

Figure 4: ηβ ,, xx D  vs. gradient modulation 

 The optimum set for our case should be around a value 
γνν ≈= arc2  and depends on the lowest energy. For 

instance, for energy E=3 GeV ( 2.4≈γ ) the 4 fold arc 

with tune of arc 3=arcν  gives the best fit. Figure 4 shows 
Twiss parameters together with slip factor dependence on 
the gradient modulation. We can see for energy 3 GeV at 
acceptable Twiss parameters behavior the maximum ratio 
is 54/ ÷≈realimag ηη , while at 4 GeV this ratio can be 

significantly higher. 

DYNAMIC APERTURE 
To the end of this paper we will discuss the numerical 
calculation results. Since the indicator of any structure is 
the dynamic aperture, we have done the tracking 
simulation in the lattice with non-similar arcs and 
compare with the lattice where the arcs are similar. Of 
course due to loss of the mirror symmetry in the whole 
ring lattice the dynamic aperture becomes smaller. But the 
significant reserve of the dynamic aperture allows having 
still the large appropriated value in the horizontal plane 
~270 mm mrad and in the vertical plane ~500 mm mrad. 
Both values very well satisfy to the required ratio between 
the dynamic and physical apertures.  

CONCLUSION 
We developed the advanced lattice for the stochastic 
cooling. The lattice has two similar arcs having the 
different mixing factors due to the different slip factors 
with conservation of the optic geometry. Each arc has two 
families of focusing quadrupoles and one family of 
defocusing quadrupole. The transition energy is adjusted 
by the quadrupole gradient modulation. The natural 
chromaticity is corrected by one family of focusing and 
defocusing sextupole. After the chromaticity correction 
the dynamic aperture remains to be very large. The 
straight section allows making the stochastic and electron 
cooling simultaneously.  

The author would like to thank D. Mohl, A. Sidorin and 
A. Dolinsky for the reading of article and discussion 
results.  
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Figure 2: Imaginary arc 

Figure 3: Real arc 
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