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Abstract 
The High Energy Storage Ring (HESR) of FAIR 

project consists of two achromatic arcs and two 
dispersionless straight sections. Due to the multi-
functional purpose of the straight sections their 
contribution into the total chromaticity of the first and 
second order exceeds the arc’s contribution and can affect 
on the non-monochromatic beam dynamic aperture. We 
investigate the optimum sextupole and octupole scheme 
correction for monochromatic and non-monochromatic 
beam to reach the larger dynamic aperture. 

INTRODUCTION 
For High Energy Storage Ring we applied the 

“resonant” lattice with the controlled momentum 
compaction factor [1, 2]. It based on the resonantly 
correlated curvature and gradient modulations in arcs with 
the integer tunes in horizontal or both planes, and the 
straight sections are tuned to give the desired fractional 
tune for whole machine. The distinguishing features of 
this lattice are: 

- the gamma transition variation in wide region from 
xt νγ ≈  to xt iνγ ≈  with quadrupole strength 

variation only; 

- the dispersion free straight section; 

- the independent optics parameters of arcs and 
straight sections; 

- two families of focusing and one defocusing 
quadrupoles; 

- the separated adjustment of gamma transition, 
horizontal and vertical tunes; 

- the convenient chromaticity correction method by 
sextupoles; 

- the first order self compensating scheme of 
multipole and large dynamic aperture; 

- the low sensitivity to the multipole errors. 

The lattice has distributed functions.  In order to 
minimize the preparation procedure for each experiment 
the lattice is supposed to have the decoupled functions, 
which are responsible for the machine global parameters 
on the arcs like transition energy, tunes, zero 
chromaticity, dispersion suppressing and local parameters 
on the straight sections like beam luminosity on target, 
optimum parameters for cooling, injection system. The 
HESR lattice consists of two arcs and two straight 
sections for target and cooling facilities with 

circumference ~500 m [1]. In HESR we considered two 
types of lattice, and both have a racetrack shape with two 
arcs and two straight sections. In first option the arc has 
the four-fold symmetry with four super periods. In second 
option the arc has six-fold symmetry with six super 
periods. The phase advance per arc is chosen 3.0 and 5.0 
in first and second options correspondingly. 

CHROMATIC SEXTUPOLE SCHEME 
Figure 1 shows the common view of HESR with a half 

superperiod of arc and indication of elements together 
with their functions.  

 
Figure 1: Schematic layout of the HESR lattice with the 
half superperiod of arc. 

The chromaticity is created by the quadrupole and defined 
as the variation of the betatron tune yx,ν  with the relative 
momentum deviation pp /Δ=δ . The sextupoles are 
inserted in the lattice for chromaticity correction. Their 
integrated contribution over whole ring circumference C 
into the chromaticity is: 
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Obviously to rise the sextupole efficiency they have to be 
allocated in the maximum dispersion and different xβ  
and yβ  values to split the chromaticity correction in the 
horizontal and vertical planes. From last point of view the 
“resonant” lattice based on FODO structure is the most 
preferable in comparison with another lattices based the 
doublet or triplet structures. In the “resonant” lattices the 
empty space of free magnet cells is used for the 
sextupoles location (see Fig. 1). Two families of 
sextupoles, each one having two focusing and two 
defocusing sextupoles are used. In some project, for 
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instance in JPARC, the focusing sextupole is inserted in 
the splintered central focusing quadrupole [3]. It makes 
sextupole efficiency higher, but decreases the effective 
quadrupole strength. 

To prove independent controllability of chromaticity on 
both focusing and defocusing sextupoles we have done 
the numerical simulation of such control in the lattice 
with initially installed zero chromaticity 0, =yxξ . 
Figures 2 and 3 show the numerical simulation results 
how focusing and defocusing sextupoles SF and SD 
change the horizontal and vertical chromaticity 
correspondingly. 

 
Figure 2: Horizontal chromaticity vs. focusing and 
defocusing sextupole gradient. 

 
Figure 3: Vertical chromaticity vs. defocusing and 
focusing sextupole gradient. 

From these results we see that the derivatives of 
horizontal xξ  and vertical yξ  chromaticities with 
gradient in the sextupoles are in relation: 
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Thus, two sextupole families can control the horizontal 
and vertical chromaticities simultaneously. 

SEXTUPOLE NON-LINEARITY 
COMPENSATION 

In common case the optics of ring consists of the 
quadrupoles, the bend magnets, the sextupoles and the 
multipole correctors. Besides, due to the imperfections the 
multipoles errors are added in the lattice. Even in ideal 
optics and for the monochromatic beam each n-th 

multipole nM  in composition with the curvature mh  
creates all higher multipoles mnM + . In case of non-
monochromatic beam 0≠Δ≡ ppδ  each multipole of 
n-th order nM  gives all multipoles )1(1 −÷ nM  of 
1÷(n-1)-th order in the place where D≠0. In case of the 
closed orbit distortion each n-th multipole nM  gives 
additionally all multipoles )1(1 −÷ nM . 

Usually the strongest contribution into the non-linearity 
is coming from the chromatic sextupoles. In order to 
investigate the non-linear optics we use the Hamiltonian 
formalism, which is presented with Hamiltonian function: 
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where jklmph  are the Fourier coefficients 
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The coefficients )(θjk
lmE  depend on the value and the 

distribution of the non-linear elements. They have the 
periodicity π2  with the new “time” coordinate Rs /=θ , 
where R  is average machine radius and s  is the length of 
arc in curvilinear system. 

In case, when we wish to exclude the resonance 
influence, we should minimize the harmonic amplitude 

jklmph . The only condition, which one cancels all 

coefficients jk
lmE  is the zero value of 0=jklmph  for all 

j,k,l,m. In particular, in case of the chromaticity correction 
on arcs with Sarc superperiods the sextupoles have to be 
placed with the phase advances yx μμ ,  per one super-
period, when the total multipole of third order is 
cancelled:  
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where yxS ,  is the sextupole gradient. 
In one hand in order to have a free dispersion straight 

section, an arc consisting of arcS  superperiods must have 
an π2  integer phase advance. It means the phase advance 

per superperiod will be equal 
arc

arc
S
ν

π  2 , where arcν  is the 

arc tune. On the other hand, for driving of the 
momentum-compaction factor the horizontal betatron 
tune must be less than the resonant harmonic of the 
perturbation, and the difference between them has to be 
minimum integer value; we take 1−=− arcarc Sν . It is 
realized at strictly fixed sets of Sarc and arcν : (4,3), (6,5), 
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(8,7) and so on. As you see the arc superperiodicity Sarc is 
taken even and arcν  is odd. Then the phase advance 
between any two cells, located in the different half arcs 
and separated by 2arcS  number of superperiods, equals 

22
arcarc

arc

arc S
S

νν
=⋅ . It means we have an exact condition 

for compensating each sextupole’s nonlinear action by 
another one in first approach. This remarkable feature is 
concern of the regular multipole errors in the bend 
magnets or quadrupoles as well, since for any element its 
twin exists on another half arc where non-linear kick is 
compensated. 

 
Figure 4: The HESR arc with elements location. 

Figure 4 shows the scheme with explanation how the 
self compensating scheme works. We can see in case of 
the four fold symmetry arcs we have two compensating 
scheme: through half arc and one super period. 

NON-LINEAR TUNE SHIFT CONTROL 
In the first order of the perturbation theory the 

sextupoles can be cancelled. But in the second order the 
non-linear perturbation contains already the higher order 
of jklmph , which gives the non-linear tune shift, like 
octupoles. 

Taking into account non-linear terms not higher than 
2
, yxI  the average Hamiltonian in vicinity of resonance can 

be written as: 
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where Δ  is the detuning from p-th resonance. The 
coefficients xyyx ζζζ ,,  determine the non-linear tune 
shift. In the first order of the perturbation theory the non-

linear tune shifts arise due to the octupoles only, but in 
the second order the sextupoles give the non-linear tune 
shift as well: oct

yxyx
sex

yxyxyxyx ,,,,,, ζζζ += . In principle, the 
sextupole non-linear tune is not under our control after the 
sextupole location fixing. Therefore the sign of total 
chromaticity is controlled by the octupoles, which are 
located in the multipole correctors. Thus, after the 
chromaticity correction we measure the non-linear tune 
shift and then using the correcting octupoles, we adjust 
the required sign and value of the non-linear tune shift. 

SECOND ORDER CHROMATICITY 
Since the chromatic sextupoles are located on the arcs 

only they have to correct chromaticity coming from the 
straight section quadrupoles as well. Unfortunately the 
target quadrupoles contribution into the total chromaticity 
of the first δν ∂∂ yx, and second order 2

,
2 δν ∂∂ yx  

exceeds the arc’s contribution and can affect on the non-
monochromatic beam dynamic aperture. Since the second 
order chromaticity is the dependence chromaticity on the 
momentum spread, and the effective sextupole is 
determined by yxyxyx ODSS ,,, ⋅⋅+= δ  the octupoles 
allocated in the non-zero dispersion place can play the 
role of second order chromaticity correctors. 

To compensate the second order chromaticity we use 
the octupole correctors incorporated into the multipole 
correctors. They are located near to each quadrupole and 
allow the separated tuning. Unfortunately if we need to 
correct both the non-linear tune and the second order 
chromaticity the additional octupoles on the straight 
section have to be foreseen. They will affect on the non-
linear tune and not influence on the chromaticity. 

CONCLUSION 
We developed the lattice with possibility to compensate 

high order non-linearity up to third order. All mulipole 
correctors are decoupled each with other and have a high 
controlled efficiency. We are thankful to R. Maier for 
attention to our work. 
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