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Abstract 
This work analyzes the envelope dynamics of a high-

intensity charged particle beam focused by constant 
magnetic field. As known, beams with mismatched 
envelopes decay into its equilibrium state with a 
simultaneous increasing of its emittance. This implies that 
in the stationary regime the beam transverse phase-space 
is characterized by a tenuous population of high velocity 
particles surrounding a dense population of low velocity 
particles. To describe this emittance growth, a test-particle 
approach has been employed by us to develop a 
simplified self-consistent macroscopic model. The model 
has been compared with full N-particle Gauss simulations 
and the agreement is shown to be quite reasonable. 

INTRODUCTION 
Magnetically focused beams of charged particles can 

relax from a nonstationary into a stationary state through 
emittance growth [1]. This is the case of beams with 
initially mismatched envelopes, flowing along the 
symmetry axis of focusing systems with a constant 
magnetic field. Gluckstern has shown [2] that the physical 
mechanism that governs this emittance growth is large 
resonant islands [3] beyond the beam border. The 
formation of these resonant islands is induced by the 
initial mismatch of the beam, which can drive particles 
residing in the beam vicinity to excursions with high 
amplitude. The resonant coupling above progressively 
converts energy of the beam macroscopic oscillation into 
kinetic energy to the microscopic chaotic movement of 
the outer particles, causing the decay of the beam 
envelope and, as a consequence, the increasing of its 
emittance. This process continues until the equilibrium 
state of the system is reached, when emittance saturates. 
In this situation, the beam can be described by two 
distinct populations of particles: a dense one, formed by 
low velocity particles which compose the beam core, and 
a tenuous one, surrounding the previous population and 
formed by high velocity particles, which compose the 
beam halo. 

The splitting of the initial beam into a cold dense and a 
hot tenuous population suggests describing the latter by 
test particles. The test particles will interact with the beam 
by the means of the Gluckstern’s resonances explained 
above. The information carried by the test particles has 
been used by us to model the dynamics of the emittance 
growth as the beam axially evolves in the focusing 

channel. In our model, the importance of the reaction of 
the test particle population over the beam core has been 
shown to depend only of the amount Nh of halo particles 
that compose the whole N-particle beam, given here by 
the fraction f=Nh/N. This fraction f has been obtained 
considering the initial and the final (stationary) beam 
densities with the aid of equations for the conserved 
quantities of the entire system, formed by the beam 
particles and fields. 

THE DEVELOPED MODEL 
The system modelled here is formed by an azimuthally 

symmetric beam of charged particles, moving inside a 
circular conducting pipe and focused by a constant 
solenoidal magnetic field, aligned with the pipe axis. The 
beam is initially cold, which means that its initial 
emittance can be neglected. Since space-charge beams are 
fairly homogeneous [1], the beam cross section initially 
obeys a uniform profile 
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r is the radial variable measured from the symmetry axis 
and ro denotes the initial value for the beam radius. As the 
beam evolves, particles are expelled from the beam core 
and start to populate an extended hot halo. At this point 
Eq. (1) is no longer valid and it is necessary to impose a 
model for the density of halo particles. Considering that 
our interest here is to relate beam quantities of its initial 
state with quantities of its stationary state, a simple 
approach is just to model the asymptotic beam halo 
density, allowing particles of the beam core still follow an 
uniform density as in Eq. (1), with its radius now 
specified by rc<ro. 

Invoking our previous assumption that the halo can 
really be modelled by test particles, in Figure 1(a) it is 
presented by us the transverse phase-space for test 
particles initially distributed in a region I=[ro, ro(1+δ)] at 
the beam border, with ro=1.6 and governed by the so 
called particle-core model equations  [7]. The equilibrium 
beam radius is req=1 and δ<<1. In Figure 1(b), it is shown 
the phase-space of a full self-consistent simulation, based 
on Gauss’ law [5][8] for a number up to N=20000 and 
after the beam reaches its stationary regime, which 
numerically means 150 beam envelope cycles. The direct 
comparison between the last two figures assures a nice 
correspondence. The beam density has been taken as a 
dense population along the horizontal branch (beam core 
particles), added by a tenuous population lying in the 
phase-space separatrix (beam halo particles). 
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Considering the semicircular shape of the separatrix, 
the linear density of the halo particles can be expressed by  
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in which rh is phase-space radius of the separatrix, ri' and 
rf' delimits the semicircular branch of the separatrix. More 
details can be found in reference [8]. For a quantitative 
test, the equation above has been compared with the 
histogram of the halo particles identified in the phase-
space of full simulation. The comparison shows to be 
relatively good for rh≈2. 
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Figure 1: Phase-spaces for (a) test particles, and (b) full 
simulations. Panel (c) displays the histogram of halo 
particles from panel (b) (with bin size of Δ=0.18) in 
comparison with our model for the halo density. 

Notwithstanding the complexity of the dynamics 
connecting the beam initial state to its stationary state, an 
exact set of governing equations can still be obtained for 
some quantities of the beam for all of its dynamics. One 
of them is for the beam envelope rb, which is related to 
the root mean square (rms) beam radius <x2+y2>1/2 
through 

2 2 22br x y≡ +  (3) 

in which the brackets denote particle average or, 
equivalently, phase-space average, the definition of which 
will be made more precise and operational later. The 
envelope equation itself reads [6] 
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in which ε(s) is the beam emittance that can depends of 
the axial distance s. Beam emittance is defined in the 
form 
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in which the primes indicate derivatives with respect to 
the axial distance s. Equation (5) is only defining, but it 
can be associated with the energy conserving relation 
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to provide information about the emittance growth 
process. In Eq. (6), ξ(s) is the average self-field energy 
per particle defined by 
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and ψ is the dimensionless scalar electromagnetic 
potential governed by the Poisson equation 
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Given the nice agreement of the developed model for 
the halo particle density in the beam stationary state, it is 
possible to decompose the beam radius rb in contributions 
from the beam halo, given by its envelope rh, and 
contributions from the beam core, given by its envelope 
rc. In order to do so, it will be necessary to break up all 
the statistic summations into two pieces: one coming from 
the cold particles of the beam core and other coming from 
hot particles of the beam halo. Specifically, based on the 
phase-spaces shown in Figure 1 (a) and (b), ensemble 
averages of radial quantities can be calculated as follow 
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in which n indexes each particle of a total of N that 
composes the beam phase-space. Splitting the summation 
above over particles originating from the beam halo and 
the beam core 
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in which Nc is the number of particles that remain inside 
the beam core in its stationary state. The conservation of 
beam particles N=Nc+Nh have been kept.  

Observing our previous definition for the fraction f of 
particles pertaining to the beam halo and for the beam 
envelope expressed by Eq. (3), it is possible to rewrite Eq. 
(10) in a more convenient way 

2 2 2 2
2 2(1 ) 2b c h

r r f r f r= − +=  (11) 

Since it has been considered that the beam has a 
uniform density core, the first summation of Eq. (10) is 
easy to carry out for any axial distance s. The same does 
not occur for the second summation, in which the 
dynamics of the halo distribution must be known. 
However, in the asymptotic limit s→∞, this summation 
can be performed using our developed model for the halo 
density, described by Eq. (2). After straightforward 
algebra, it is possible to show the important relation for 
the beam stationary state [4] [8] 
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2 2 2(1 )( )b c hr f r frs − +→∞ =  (12)

If one now supplements Eqs. (4)-(8) with the initial 
condition at beam entrance rb(s=0)=ro augmented by a 
condition of straight injection rb'(s=0)=0, estimates on the 
stationary state s→∞ as a function of the beam radius ro 
of an initially mismatched beam become possible. In this 
procedure, it must be considered the asymptotic phase-
space quantities that has been previously defined, namely 
the separatrix radius rh and the beam core radius rc. These 
quantities are necessary to evaluate radial integrations 
over Eqs. (7) and (8). Also, it is necessary to made use of 
the information provided by Eq. (12). Established the 
equations for the initial and the stationary state of the 
beam and solved the system formed by them, a 
polynomial of degree 2 in f has been found, whose 
solution can be numerically calculated. For rh≈2, rc≈1, 
and ro=1.6, the value of the fraction is f=0.102, which is 
very close to the value provided by full simulations 
fsimul≈0.091. 
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Figure 2: Emittance ε(s) growth and envelope rb(s) 
dynamics in: (a) full simulations, (b) the case where the 
core rc(s) oscillates with fixed amplitude, and (c) in the 
self-consistent simplified model. 

BEAM DECAY DYNAMICS 
Once beam quantities corresponding to the stationary 

state have been predicted, information about its dynamics 
toward its equilibrium state can also be obtained. The 
overall emittance for the beam is defined in Eq. (5). As 
has been done earlier, the summation of the velocity term 
in Eq. (5) can be divided into its core and in its halo 
components. The resulting expression takes the form 

2 2 2 2 2(1 ) ' 2 ' 'b c bh
r f r f r rε ⎡ ⎤= − + −⎣ ⎦  (13) 

in which the average subscripted with h now denotes 
average only over the test particle population, which is 
the one modelling the halo. 

Our results for emittance growth are summarized by 
comparisons of Figure 2 (a) with Figure 2 (b) and (c). In 
panel (a), it has been plotted the results of full Gauss 
simulations. In panel (b), it has been plotted the results for 
the rms envelope radius rb of our model. In this case, the 
beam core envelope rc is governed by Eq. (3) with ε set to 
zero. It is noticed that as soon as phase-mixing takes place 
due to the chaotic dynamics of the ejected test particles, 
emittance ceases to grow even though the core continues 
its oscillatory dynamics. Emittance exhibits much larger 
oscillations around the average asymptotic value since 
there is no decay of the beam envelope. The observed 
envelope growth is clearly a wrong result which has been 
fixed in panel (c). For that, the observed emittance growth 
is feedbacked in Eq. (4), forcing the beam envelope to 
decay, improving its dynamical description as shown. 
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