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Abstract 
The XAL application development environment has 

been installed as a part of the control system for the Japan 
Proton Accelerator Research Center (J-PARC) in Tokai, 
Japan. XAL was initially developed at the Spallation 
Neutron Source (SNS) and has been described at length in 
previous conference proceedings [4]. Included in XAL is 
an online model for doing quick physics simulations [1]. 
We outline the upgrades and enhancements to the XAL 
online model necessary for accurate simulation of the J-
PARC linac and transport system. 

INTRODUCTION 
The fundamental tenet of XAL is to provide a 

consistent, high-level programming interface, along with 
a set of high-level application tools, all of which are 
independent of the underlying machine hardware. Control 
applications can be built to run at any accelerator site 
where XAL is installed. Of course each site typically has 
specific needs not supported by XAL and the framework 
was designed with this in mind; each institution can make 
upgrades to XAL which are then available to all other 
users. Recently, many upgrades to the XAL online model 
were made to enhance operation in general and with 
specific regard to the J-PARC accelerator complex.  This 
effort includes the addition of new features as well as the 
enhancements of existing one. Moreover, a major 
refactoring effort of the original architecture was 
undertaken in order to incorporate many previous 
modifications into a more robust framework.  The XAL 
online model is built upon the Element/Algorithm/Probe 
design pattern and this refactoring included a significant 
restructuring of the Algorithm and Probe components of 
this architecture. Finally, in addition to this refactoring 
and enhancement, a significant effort was devoted toward 
verification of the online model. (For a comprehensive 
summary of this work see [3]).  

RF GAP MODELING ELEMENT 
Significant enhancements to the XAL RF gap modeling 

element, IdealRfGap, were performed. In addition, 
major refactoring efforts were devoted toward enhancing 
robustness and clarity (including significant commenting 
of the underlying simulation procedure), as well as the 
emittance growth mechanism described below. 

Verification of the XAL RF gap simulation was made 
against the simulation code Trace3D [5]. Initially there 
was a small discrepancy between XAL and Trace3D. This 

discrepancy was caused by an error in the normalization 
procedure for longitudinal momentum.   

Previously at J-PARC, the ability to model emittance 
growth due to phase spread through RF gap elements was 
added to XAL. The modeling technique implemented was 
the same as that used in Trace3D. The operation of this 
feature was verified for the transverse phase planes.  
However, it was discovered that the model for 
longitudinal phase-plane emittance growth was invalid for 
beam bunches with large phase spread. Since this is 
exactly the case for the J-PARC transport line to the RCS, 
such a modeling shortfall is of significant consequence.  
A more appropriate model for longitudinal emittance 
growth was developed; the details are to appear in a later 
publication. 

Briefly, the form of the emittance growth function is 
G(φ,Δφ) = S(Δφ) – T(Δφ)sin2φ where φ is the RF gap 
phase, Δφ is the bunch phase spread, and S and T are 
bounded real functions with limiting values of ½ and 0, 
respectively.  Thus, we can get an appreciation for the 
maximum emittance growth as a function of Δφ by 
looking at the difference S(Δφ) – T(Δφ). We find that, in 
general S(Δφ) – T(Δφ) is small for small Δφ, then it 
increases toward a limiting value where emittance growth 
will saturate regardless of the value φ.  This effect is 
shown in Figure 1 for several different beam distributions. 

Trace3D correctly captures this effect in the transverse 
planes.  However, it uses a two-term approximation of 
G(φ,Δφ) in Δφ in the longitudinal case and, thus, this 
saturation effect is not captured.  Consequently emittance 
can grow unbounded as phase spread increases.  This 
condition can cause the beam to growth longitudinally 
because of the artificially high temperature.  

The mechanism for simulating this emittance growth 
was significantly refactored in the J-PARC XAL 
framework. Although this capability had been added 
earlier, it was done more as a proof of principle and did 
not conform to the Element/Algorithm/Probe architecture.  
Therefore, significant modifications to the existing code 
were made to adapt the mechanism to the architecture of 
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Figure 1: longitudinal emittance growth saturation. 
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the online model to ensure robustness of future code 
operation. The primary restructuring was to put the 
emittance growth model into the algorithm component, its 
natural setting. Additionally, emittance growth was made 
an optional feature.  

SPACE CHARGE EFFECTS MODELING 
An exhaustive verification of the online model 

operation was performed against the simulation code 
Trace3D. Simulation predictions now show exact 
agreement, except in the presence of permanent magnet 
quadrupole (PMQ) elements. Because this small 
discrepancy exists without space charge effects, it appears 
to be due to differences in the way PMQs are modeled in 
the two cases.  

Part of the challenge is the differing procedures for 
approximating space charge momentum “kicks.” It was 
necessary to change the XAL space charge kick procedure 
in the EnvelopeTracker algorithm class to exactly that 
of Trace3D.  There are subtleties involved: Given a step 
length of size h through an element n, the XAL online 
model now steps as Φn(h/2)Φsc(h)Φn(h/2) where Φn is the 
transfer matrix beamline element n and Φsc is the space-
charge transfer matrix. Previously, XAL stepped as 
Φsc(h/2)Φn(h)Φsc(h/2). Both second-order accurate in h by 
the Campbell-Baker-Hausdorff theorem. Thus, the 
remainder term is of order O(h3), however, being a 
nonlinear system the errors accumulate, especially after 
300 meters. To properly compare the codes you must 
simulate the dynamics exactly.  (The differences are then 
indicative of the limitations in the underlying technique 
itself.) Another interesting fact is that Trace3D initially 
steps a distance h/2 through an element n (without space 
charge) then applies the space-charge momentum kick for 
length h, according to the scheme Φn(h/2)Φsc(h)Φn(h/2). 
To finish the iteration procedure, the beam is again 
advanced a distance h/2 (without space charge). Of course 
the next iteration again steps the beam a distance h/2 
within the element n. However, since Φn(h/2)Φn(h/2) = 
Φn(h) for all n (except a PMQ), it is essentially just a leap-
frog technique after that point.  It is necessary to step this 
initial offset to obtain exact comparison with Trace3D. 

The method used to compute the space charge matrix 
Φsc(h) within XAL is more general then that of Trace3D. 
This fact is due to the use of homogeneous phase space 
coordinates within XAL. However, it also complicates the 
space charge calculations. Several errors were discovered 
in the space charge mechanism during the course of this 
analysis. For example, a Lorentz transform was missed 
completely and there was an error in the treatment of off-
centered beams. Moreover, the original code would work 
only for beams that were tilted in one phase plane (which 
would cover most situations). A general solution was 
developed involving Jacobi decomposition of the 
covariance matrix. Further details are described in [1]. 

In addition, several physical and mathematical 
constants differed slightly in the two codes. These values 
were located, coalesced, and corrected. The actual 

corrections were made Trace3D, since the modified 
values were more accurate than the original values. 

PROBE HIERARCHY REFACTORING 
The representation of bunched beams was completely 

refactored. Previously there were many questionable 
implementations resulting in a very brittle situation. For 
example, there originally were two parameters, beam 
current I and bunch charge Q in the BeamProbe 
hierarchy. From these you can calculate the bunch 
frequency f = I/Q (a method existed). This quantity was 
not the machine frequency, it could be different (e.g., 
when not filling every RF bucket). However, post facto a 
third attribute, frequency f, had been added to the 
BeamProbe hierarchy. So, we were left with a dangerous 
inconsistency. Worse yet, there were many instances 
where the frequency was simply hard-coded into 
applications and, worse further, into the XAL framework 
itself.  In retrospect the bunch frequency and beam current 
should have been fundamental attributes of the 
BeamProbe class (parameters most familiar to the beam 
physicist), from which bunch charge would be computed. 
The architecture was changed accordingly.   

The most dangerous condition found in the Probe 
component was caused by the redundant state information 
in the EnvelopeProbe (a BeamProbe child). The 
primary attribute of a EnvelopeProbe is the covariance 
matrix, the matrix of first and second order moments of 
the beam distribution.  However, a set of Twiss parameter 
attributes had also been added to the class. Not only did 
we have the potential for inconsistency (the covariance 
matrix is a Twiss parameter generalization), but we had 
actual inconsistencies within the implementation 
itself. Particularly, there was a dangerous situation 
relating to inheritance and the virtual method nature of 
Java. When calling a method to return a Twiss parameter 
computation from the covariance matrix you would 
actually get the local Twiss parameters of the probe. 

All state information was moved out of the BeamProbe 
class, probably an architectural error in the original 
implementation. Other than bunch frequency and current, 
no state information belongs there. In order to deal with 
the redundant state information another probe class was 
implemented having Twiss parameters as the primary 
state variables (see next section). Implementing new 
probe classes is not as straightforward as it could be 
(refactoring would be appropriate here), but it is not 
difficult.  

TWISS PARAMETER SIMULATION 
Support for the direct simulation of Twiss parameters 

for bunched beams was added to the XAL framework. 
This was done to support backward capability for the 
EnvelopeProbe class, where that simulation capability 
was deprecated. Creation of a separate simulation 
mechanism for Twiss parameters required the 
implementation of several new classes, as well as support 
for these classes within the XAL persistent data 
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mechanism. The main class for beam representation is 
TwissProbe while the simulation algorithm is 
TwissTracker. Fundamental state variables of the 
TwissProbe class are the centroid location, the response 
matrix, and Twiss parameters representing the beam 
ellipses in the three phase planes. Note that because of the 
nature of this state information the simulation will be 
inaccurate in the presences of bending magnets, 
misalignments, or any other elements coupling the phase 
planes. Space charge may be included in a TwissProbe 
simulation; however, it too is accurate only without phase 
plane coupling. 

ALGORITHM REFACTORING 
The algorithm class hierarchy of the XAL online model 

was refactored to add additional software capabilities and 
increase the robustness of the code. In addition, two 
classes used for simulating the RMS behavior of bunched 
beams were substantially refactored. These classes, 
EnvelopeTracker and EnvTrackerAdapt, contain 
algorithms for advancing EnvelopeProbe objects 
through machine elements. Also, several bugs were found 
in the EnvTrackerAdapt class, the Twiss parameters 
would not be computed correctly in some instances, and 
the phase advance also appeared to be incorrect. Finally, 
new documentation to the code (Javadoc) was added to 
explain the new architecture. 

For users of the online model the following summarizes 
the major refactoring: 1) The AlgorithmFactory class 
is now deprecated and replaced by an implementation 
using Java reflection, one only needs to specify the Java 
class type. 2) The EditContext loading mechanism was 
moved down to the Tracker base class and deprecated in 
its child class TrackerAdaptive. Consequently, any 
algorithm and, thus, probe type can use the 
model_params automated technique for retrieving its 
parameters.   This feature is still only implemented for the 
EnvTrackerAdapt class. 3) The TrackerAdaptive 
middle class was removed and all it functionality placed 
into the Tracker base class. 

BENDING MAGNETS  
The capability of simulating space charge effects within 

bending magnets was added to the XAL online model. 
Model elements require a specific architecture to support 
space charge calculations.  It was necessary to implement 
a separate object for bending dipole magnets according to 
this architecture.   

Previously there were two elements in XAL which 
modeled bending dipoles. ThickDipole modeled a 
bending dipole and correctly handles the dynamics when 
driving the dipole magnet off the design field strength. 
However it does not conform to the XAL architecture 
and, consequently, cannot handle space charge correctly. 
IdealMagWedgeDipole supported the space charge 
mechanism of the XAL online model, however, it did not 

treat the dynamics due to variations in field strength; it 
only handles the change in quadrupole focusing. 

The architecture of IdealMagWedgeDipole is shown 
in the UML class diagram Figure 2. It is a composite of 
three separate objects, the entrance pole face, the magnet 
body (an IdealMagSectorDipole object), and the exit 
pole face. A new object, IdealMagWedgeDipole2 was 
created which combines the aspects of the previous two 
classes. As shown in the figure, the magnet body was 
replaced with IdealMagSectorDipole2 which contains 
the dynamics in the original ThickDipole class. In other 
words, the physics of ThickDipole was implemented 
into the architecture of IdealMagWedgeDipole.   

Another refactoring effort worth noting is the removal 
of an SNS stripper foil exception. No stripper foils are 
assumed in the dipole, as was the case previously if the 
design curvature and the particle curvature had differing 
signs. A more robust design should be implemented to 
handle this situation if necessary. This would probably 
entail the creation of a new class represented a stripper 
foil which would change the properties of the probe 
object. The previous implementation may have led to 
some very confusing surprises in some simulations 
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Figure 2: bending dipole architecture. 
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