
XAL ONLINE MODEL ENHANCEMENTS FOR J-PARC COMMISSIONING
AND OPERATION*

C.K. Allen#, ORNL, Oak Ridge, TN 37830 USA
M. Ikegami, KEK, Tsukuba, Ibaraki 305-0801 Japan

H. Sako, G. Shen, H. Ikeda, T.Ohkawa, A. Ueno, JAEA, Tokai, Ibaraki 319-1195 Japan

Abstract
The XAL application development environment has

been installed as a part of the control system for the Japan
Proton Accelerator Research Center (J-PARC) in Tokai,
Japan. XAL was initially developed at the Spallation
Neutron Source (SNS) and has been described at length in
previous conference proceedings [4]. Included in XAL is
an online model for doing quick physics simulations [1].
We outline the upgrades and enhancements to the XAL
online model necessary for accurate simulation of the J-
PARC linac and transport system.

INTRODUCTION
The fundamental tenet of XAL is to provide a

consistent, high-level programming interface, along with
a set of high-level application tools, all of which are
independent of the underlying machine hardware. Control
applications can be built to run at any accelerator site
where XAL is installed. Of course each site typically has
specific needs not supported by XAL and the framework
was designed with this in mind; each institution can make
upgrades to XAL which are then available to all other
users. Recently, many upgrades to the XAL online model
were made to enhance operation in general and with
specific regard to the J-PARC accelerator complex. This
effort includes the addition of new features as well as the
enhancements of existing one. Moreover, a major
refactoring effort of the original architecture was
undertaken in order to incorporate many previous
modifications into a more robust framework. The XAL
online model is built upon the Element/Algorithm/Probe
design pattern and this refactoring included a significant
restructuring of the Algorithm and Probe components of
this architecture. Finally, in addition to this refactoring
and enhancement, a significant effort was devoted toward
verification of the online model. (For a comprehensive
summary of this work see [3]).

RF GAP MODELING ELEMENT
Significant enhancements to the XAL RF gap modeling

element, IdealRfGap, were performed. In addition,
major refactoring efforts were devoted toward enhancing
robustness and clarity (including significant commenting
of the underlying simulation procedure), as well as the
emittance growth mechanism described below.

Verification of the XAL RF gap simulation was made
against the simulation code Trace3D [5]. Initially there
was a small discrepancy between XAL and Trace3D. This

discrepancy was caused by an error in the normalization
procedure for longitudinal momentum.

Previously at J-PARC, the ability to model emittance
growth due to phase spread through RF gap elements was
added to XAL. The modeling technique implemented was
the same as that used in Trace3D. The operation of this
feature was verified for the transverse phase planes.
However, it was discovered that the model for
longitudinal phase-plane emittance growth was invalid for
beam bunches with large phase spread. Since this is
exactly the case for the J-PARC transport line to the RCS,
such a modeling shortfall is of significant consequence.
A more appropriate model for longitudinal emittance
growth was developed; the details are to appear in a later
publication.

Briefly, the form of the emittance growth function is
G(φ,Δφ) = S(Δφ) – T(Δφ)sin2φ where φ is the RF gap
phase, Δφ is the bunch phase spread, and S and T are
bounded real functions with limiting values of ½ and 0,
respectively. Thus, we can get an appreciation for the
maximum emittance growth as a function of Δφ by
looking at the difference S(Δφ) – T(Δφ). We find that, in
general S(Δφ) – T(Δφ) is small for small Δφ, then it
increases toward a limiting value where emittance growth
will saturate regardless of the value φ. This effect is
shown in Figure 1 for several different beam distributions.

Trace3D correctly captures this effect in the transverse
planes. However, it uses a two-term approximation of
G(φ,Δφ) in Δφ in the longitudinal case and, thus, this
saturation effect is not captured. Consequently emittance
can grow unbounded as phase spread increases. This
condition can cause the beam to growth longitudinally
because of the artificially high temperature.

The mechanism for simulating this emittance growth
was significantly refactored in the J-PARC XAL
framework. Although this capability had been added
earlier, it was done more as a proof of principle and did
not conform to the Element/Algorithm/Probe architecture.
Therefore, significant modifications to the existing code
were made to adapt the mechanism to the architecture of

0 2 4 6 8
0

0.1
0.2
0.3
0.4
0.5

S- T gaus

S- T holl

S- T para

S- T unif

S- T

Figure 1: longitudinal emittance growth saturation.

* Work supported by KEK under a foreign visiting scientist grant.
#ckallen@ornl.gov

Δφ

delt

MOPAN029 Proceedings of PAC07, Albuquerque, New Mexico, USA

06 Instrumentation, Controls, Feedback & Operational Aspects

218

T04 Accelerator/Storage Ring Control Systems

1-4244-0917-9/07/$25.00 c©2007 IEEE

the online model to ensure robustness of future code
operation. The primary restructuring was to put the
emittance growth model into the algorithm component, its
natural setting. Additionally, emittance growth was made
an optional feature.

SPACE CHARGE EFFECTS MODELING
An exhaustive verification of the online model

operation was performed against the simulation code
Trace3D. Simulation predictions now show exact
agreement, except in the presence of permanent magnet
quadrupole (PMQ) elements. Because this small
discrepancy exists without space charge effects, it appears
to be due to differences in the way PMQs are modeled in
the two cases.

Part of the challenge is the differing procedures for
approximating space charge momentum “kicks.” It was
necessary to change the XAL space charge kick procedure
in the EnvelopeTracker algorithm class to exactly that
of Trace3D. There are subtleties involved: Given a step
length of size h through an element n, the XAL online
model now steps as Φn(h/2)Φsc(h)Φn(h/2) where Φn is the
transfer matrix beamline element n and Φsc is the space-
charge transfer matrix. Previously, XAL stepped as
Φsc(h/2)Φn(h)Φsc(h/2). Both second-order accurate in h by
the Campbell-Baker-Hausdorff theorem. Thus, the
remainder term is of order O(h3), however, being a
nonlinear system the errors accumulate, especially after
300 meters. To properly compare the codes you must
simulate the dynamics exactly. (The differences are then
indicative of the limitations in the underlying technique
itself.) Another interesting fact is that Trace3D initially
steps a distance h/2 through an element n (without space
charge) then applies the space-charge momentum kick for
length h, according to the scheme Φn(h/2)Φsc(h)Φn(h/2).
To finish the iteration procedure, the beam is again
advanced a distance h/2 (without space charge). Of course
the next iteration again steps the beam a distance h/2
within the element n. However, since Φn(h/2)Φn(h/2) =
Φn(h) for all n (except a PMQ), it is essentially just a leap-
frog technique after that point. It is necessary to step this
initial offset to obtain exact comparison with Trace3D.

The method used to compute the space charge matrix
Φsc(h) within XAL is more general then that of Trace3D.
This fact is due to the use of homogeneous phase space
coordinates within XAL. However, it also complicates the
space charge calculations. Several errors were discovered
in the space charge mechanism during the course of this
analysis. For example, a Lorentz transform was missed
completely and there was an error in the treatment of off-
centered beams. Moreover, the original code would work
only for beams that were tilted in one phase plane (which
would cover most situations). A general solution was
developed involving Jacobi decomposition of the
covariance matrix. Further details are described in [1].

In addition, several physical and mathematical
constants differed slightly in the two codes. These values
were located, coalesced, and corrected. The actual

corrections were made Trace3D, since the modified
values were more accurate than the original values.

PROBE HIERARCHY REFACTORING
The representation of bunched beams was completely

refactored. Previously there were many questionable
implementations resulting in a very brittle situation. For
example, there originally were two parameters, beam
current I and bunch charge Q in the BeamProbe
hierarchy. From these you can calculate the bunch
frequency f = I/Q (a method existed). This quantity was
not the machine frequency, it could be different (e.g.,
when not filling every RF bucket). However, post facto a
third attribute, frequency f, had been added to the
BeamProbe hierarchy. So, we were left with a dangerous
inconsistency. Worse yet, there were many instances
where the frequency was simply hard-coded into
applications and, worse further, into the XAL framework
itself. In retrospect the bunch frequency and beam current
should have been fundamental attributes of the
BeamProbe class (parameters most familiar to the beam
physicist), from which bunch charge would be computed.
The architecture was changed accordingly.

The most dangerous condition found in the Probe
component was caused by the redundant state information
in the EnvelopeProbe (a BeamProbe child). The
primary attribute of a EnvelopeProbe is the covariance
matrix, the matrix of first and second order moments of
the beam distribution. However, a set of Twiss parameter
attributes had also been added to the class. Not only did
we have the potential for inconsistency (the covariance
matrix is a Twiss parameter generalization), but we had
actual inconsistencies within the implementation
itself. Particularly, there was a dangerous situation
relating to inheritance and the virtual method nature of
Java. When calling a method to return a Twiss parameter
computation from the covariance matrix you would
actually get the local Twiss parameters of the probe.

All state information was moved out of the BeamProbe
class, probably an architectural error in the original
implementation. Other than bunch frequency and current,
no state information belongs there. In order to deal with
the redundant state information another probe class was
implemented having Twiss parameters as the primary
state variables (see next section). Implementing new
probe classes is not as straightforward as it could be
(refactoring would be appropriate here), but it is not
difficult.

TWISS PARAMETER SIMULATION
Support for the direct simulation of Twiss parameters

for bunched beams was added to the XAL framework.
This was done to support backward capability for the
EnvelopeProbe class, where that simulation capability
was deprecated. Creation of a separate simulation
mechanism for Twiss parameters required the
implementation of several new classes, as well as support
for these classes within the XAL persistent data

Proceedings of PAC07, Albuquerque, New Mexico, USA MOPAN029

06 Instrumentation, Controls, Feedback & Operational Aspects

1-4244-0917-9/07/$25.00 c©2007 IEEE

T04 Accelerator/Storage Ring Control Systems

219

mechanism. The main class for beam representation is
TwissProbe while the simulation algorithm is
TwissTracker. Fundamental state variables of the
TwissProbe class are the centroid location, the response
matrix, and Twiss parameters representing the beam
ellipses in the three phase planes. Note that because of the
nature of this state information the simulation will be
inaccurate in the presences of bending magnets,
misalignments, or any other elements coupling the phase
planes. Space charge may be included in a TwissProbe
simulation; however, it too is accurate only without phase
plane coupling.

ALGORITHM REFACTORING
The algorithm class hierarchy of the XAL online model

was refactored to add additional software capabilities and
increase the robustness of the code. In addition, two
classes used for simulating the RMS behavior of bunched
beams were substantially refactored. These classes,
EnvelopeTracker and EnvTrackerAdapt, contain
algorithms for advancing EnvelopeProbe objects
through machine elements. Also, several bugs were found
in the EnvTrackerAdapt class, the Twiss parameters
would not be computed correctly in some instances, and
the phase advance also appeared to be incorrect. Finally,
new documentation to the code (Javadoc) was added to
explain the new architecture.

For users of the online model the following summarizes
the major refactoring: 1) The AlgorithmFactory class
is now deprecated and replaced by an implementation
using Java reflection, one only needs to specify the Java
class type. 2) The EditContext loading mechanism was
moved down to the Tracker base class and deprecated in
its child class TrackerAdaptive. Consequently, any
algorithm and, thus, probe type can use the
model_params automated technique for retrieving its
parameters. This feature is still only implemented for the
EnvTrackerAdapt class. 3) The TrackerAdaptive
middle class was removed and all it functionality placed
into the Tracker base class.

BENDING MAGNETS
The capability of simulating space charge effects within

bending magnets was added to the XAL online model.
Model elements require a specific architecture to support
space charge calculations. It was necessary to implement
a separate object for bending dipole magnets according to
this architecture.

Previously there were two elements in XAL which
modeled bending dipoles. ThickDipole modeled a
bending dipole and correctly handles the dynamics when
driving the dipole magnet off the design field strength.
However it does not conform to the XAL architecture
and, consequently, cannot handle space charge correctly.
IdealMagWedgeDipole supported the space charge
mechanism of the XAL online model, however, it did not

treat the dynamics due to variations in field strength; it
only handles the change in quadrupole focusing.

The architecture of IdealMagWedgeDipole is shown
in the UML class diagram Figure 2. It is a composite of
three separate objects, the entrance pole face, the magnet
body (an IdealMagSectorDipole object), and the exit
pole face. A new object, IdealMagWedgeDipole2 was
created which combines the aspects of the previous two
classes. As shown in the figure, the magnet body was
replaced with IdealMagSectorDipole2 which contains
the dynamics in the original ThickDipole class. In other
words, the physics of ThickDipole was implemented
into the architecture of IdealMagWedgeDipole.

Another refactoring effort worth noting is the removal
of an SNS stripper foil exception. No stripper foils are
assumed in the dipole, as was the case previously if the
design curvature and the particle curvature had differing
signs. A more robust design should be implemented to
handle this situation if necessary. This would probably
entail the creation of a new class represented a stripper
foil which would change the properties of the probe
object. The previous implementation may have led to
some very confusing surprises in some simulations

REFERENCES
[1] C.K. Allen, K. Furukawa, M. Ikegami, and K. Oide,

“Adaptive Three-Dimensional RMS Envelope
Simulation in the SAD Accelerator Modeling
Environment”, LINAC06 Conference Proceedings,
Knoxville, TN, June, 2006.

[2] C.K. Allen, C.A. McChesney, C.P. Chu, J.D.
Galambos, W.-D. Klotz, T.A. Pelaia, A. Shislo, “A
Novel Online Simulator for Applications Requiring a
Model Reference”, ICALEPCS 2003 Conference
Proceedings, Kyongju, Korea, October 13-17, 2003.

[3] C.K. Allen, “Foreign Visiting Researcher Project
Summary Report: Accelerator Controls and
Simulation”, KEK internal document.

[4] C.P. Chu, S. Cousineau, J.D. Galambos, J. Holmes,
T.A. Pelaia, A. Shishlo, Y. Zhang, C.K. Allen, “SNS
Application Programming Infrastructure and Physics
Applications”, APAC07, Indore, India, Jan 29 - Feb
2, 2007.

[5] K.R. Crandall and D.P. Rusthoi, "TRACE 3D
Documentation", LANL Report LA-UR-97-886.

IdealMagWedgeDipole2

IdealMagDipoleFace2 IdealMagDipoleFace2

IdealMagSectorDipole2

ThickElementThinElement ThinElement
Figure 2: bending dipole architecture.

MOPAN029 Proceedings of PAC07, Albuquerque, New Mexico, USA

06 Instrumentation, Controls, Feedback & Operational Aspects

220

T04 Accelerator/Storage Ring Control Systems

1-4244-0917-9/07/$25.00 c©2007 IEEE

