
VECTOR PROCESSING ENHANCEMENTS FOR REAL-TIME IMAGE
ANALYSIS*

S. Shoaf, Advanced Photon Source,
Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, U.S.A.

Abstract
A real-time image analysis system was developed for

beam imaging diagnostics. An Apple Power Mac G5 with
an Active Silicon LFG frame grabber was used to capture
video images that were processed and analyzed. Software
routines were created to utilize vector-processing
hardware to reduce the time to process images as
compared to conventional methods. These improvements
allow for more advanced image processing diagnostics to
be performed in real time.

INTRODUCTION
Conventional methods for image processing often use

loops in software to operate on one pixel at a time. This
serial-based approach to pixel manipulation is very simple
and easy to implement. The downside of such an
approach is the amount of processing time required to
work on each individual pixel. As the number of pixels in
the image increases, so does the processing time that is
required to analyze the data. This paper provides one
possible solution to address the large processing times
that occur when performing image analysis in real time.

SYSTEM OVERVIEW
An analog-based video system was developed to

perform real-time analysis of x-ray beam images. Analog
video signals from cameras are sent to a video multiplexer
that routes the signal to the input of the analog video
frame grabber. The analog frame grabber captures VGA-
sized (640x480 pixel) video at 30 frames per second (fps).
The images are then processed and analyzed in real time
between image acquisitions. The operations involved in
the capturing, processing, analysis, and image display
must be performed quickly, as images are acquired every
33 ms. Because of computer system overhead, the entire
33 ms of time between image acquisitions is not
completely available to a developer. This adds additional
constraints to try and maintain real-time performance.

HARDWARE
The host computer was an Apple Power Mac G5 with

dual 2.7-GHz processors, 1 GB of RAM, running Mac OS
10.4. The frame grabber was an Active Silicon LFG series
PCI (AS-LFG4-PCI64) board. External TTL level trigger
signals were connected to the frame grabber board for
interrupt-driven response. Analog (RS-170) video
cameras were used to feed an input signal to the frame
grabber.

SOFTWARE
The host computer runs Mac OS 10.4 and EPICS

R3.14.8 natively for the control system. Custom EPICS
device support was written to control the frame grabber
hardware and respond to the interrupt signals. A custom
program written in C was developed to perform the image
processing and analysis operations, and to display the
resultant image all in real time. In order to improve on
software efficiency, several other tools were used during
the software development.

DEVELOPMENT TOOLS
Apple Inc. provides developer tools with its Mac OS X

operating system. The XCode development suite and
CHUD toolkit were used on this project. One very helpful
tool available to Mac developers is Shark. Shark is used
to analyze how much Central Processing Unit (CPU) time
the different components of a program are using. From
this information, a developer can see where they would
gain the most performance improvement by optimizing
code. When running Shark for the first time on this
project, the analysis results showed that the most CPU
cycles were being used by the image pixel manipulation
routines and the graphics image display routine. A sample
output from Shark is presented in Figure 1. Apple also
provides the OpenGL Profiler tool that analyzes the
performance of the video graphics card and reports how
the Graphics Processing Unit (GPU) cycles are being
used. A sample output from the OpenGL Profiler is
shown in Figure 2. These tools provided the added
capability to pinpoint the software routines that needed
the most optimization in order to reduce the overall
processing time.

Figure 1: Sample output from Shark developer tool.

__

*Work supported by U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract No. DE-AC02-
06CH11357.

Proceedings of PAC07, Albuquerque, New Mexico, USA FRPMN119

06 Instrumentation, Controls, Feedback & Operational Aspects

1-4244-0917-9/07/$25.00 c©2007 IEEE

T03 Beam Diagnostics and Instrumentation

4399

Figure 2: Sample output from OpenGL Profiler tool.

Once the sections of the code that were using the most

CPU cycles during execution were identified by the use of
the aforementioned tools, a technique had to be developed
and/or used to reduce the processing time. The potential
speed increases that could be achieved by taking
advantage of the large bandwidth capabilities that vector
processing offers made it a clear choice for this project.

VECTOR PROCESSING
The G5 processor is used in the Apple Power Mac

computers. There are system optimizations in the G5
platform available to a programmer that can enhance
performance [1]. The G5 processor has a special
processing unit called the Velocity Engine, which is built
into the PowerPC architecture. The Velocity Engine is a
128-bit vector execution unit that operates on large
amounts of data in parallel. By writing software that
utilizes the AltiVec instruction set in the Velocity Engine,
one can lower processing time for high-bandwidth
applications. Speed enhancements of up to 30X on
operations are possible using AltiVec code [2].

One of the typical image operations implements a
background noise level subtraction. The background
image subtraction function was rewritten to take
advantage of the AltiVec vector processing support in the
Power PC chip. Figure 3 shows a representation of a
single vector subtraction operation. Using vectors, 16 8-
bit pixels of the acquired image are loaded into a vector.
The same corresponding pixels from a previously
captured background noise level image are loaded into a
different vector. The 16 background pixels are subtracted
in parallel from the 16 acquired image pixels and stored
in another vector. The results of the subtraction operation
are stored in memory. This process is repeated until all of
the pixels in the originally acquired image have had the
corresponding pixels from the background image
subtracted as well. The vector subtraction implementation
of the background noise level resulted in a four-fold
decrease from the original time it took to subtract an
image. Using a simple for-next loop, it took ~4 ms to
perform a background subtraction on the image. The new

vector-based background subtraction completes in less
than 1 ms. The vector operation did not result in a speed
increase of 16X even though there were 16 pixels being
subtracted simultaneously. Although there are many
advantages to using vectors, their overhead costs still
limit the overall performance increase.

Figure 3: Representation of a single vector operation for
the background noise-level subtraction operation.

One of the desired operations was to average up to 255

images in a moving boxcar algorithm. The simple for-
next loop would take approximately 4 ms to add an image
into the buffer and another 4 ms to subtract an image that
needs to be removed from the boxcar once the loop
reached the number of images that should be included.
That was an additional 8 ms of processing time that
would have been added to the total time, not including the
time to do the actual averaging calculation. The total time
had to be well less than 33 ms, otherwise the system
could not acquire and analyze the next frame in real time.
There was other overhead in the system that typically
interrupted processing as well, while important system
interrupts were handled. All of this implied that the image
operations should be performed in the least amount of
time possible. A vector-processing algorithm was
developed to perform this operation. It is not shown in the
text of this paper because of size constraints. The new
vector-processing routine for this operation takes less than
3 ms to complete its task.

Another function taking a considerable amount of time
was the required conversion of an 8-bit grayscale image
to a 24-bit color image for display on the monitor. A
vector-based image conversion routine to convert the 8-
bit grayscale image to a 24-bit RGB color image was
written and reduced processing time from 15 ms down to
10 ms. Figure 4 shows how the 8-bit pixels in the vector
were extended to create a 24-bit RGBX format in
memory. There are four iterative operations that take
place for each of the 16 8-bit pixels from the original
image to extend it to 24 bits. This new routine was a
marked improvement in processing time, but further
improvements were still required. By utilizing the
OpenGL Profiler tool from Apple, improvements in the
OpenGL display routine were then developed to reduce
the overall display time down to less than 5 ms.

FRPMN119 Proceedings of PAC07, Albuquerque, New Mexico, USA

06 Instrumentation, Controls, Feedback & Operational Aspects

4400

T03 Beam Diagnostics and Instrumentation

1-4244-0917-9/07/$25.00 c©2007 IEEE

Figure 4: Representation of the vector operation to
extend an 8-bit grayscale image into a 24-bit color image.

CONCLUSION
Conventional methods for image processing in a real-

time image analysis system can limit the complexity
and/or quantity of analysis being performed. By taking
advantage of vector processing, one can greatly decrease
the processing time needed to perform image analysis
operations. This then allows for more complex image
processing and/or analysis techniques to be implemented
in a real-time beam image diagnostic tool. The work done
in this paper was performed on a PowerPC-based Apple
computer. In the future, there are plans to convert the
AltiVec vector instructions to SSE vector instructions to
support Intel-based Apple computers [3]. SSE instructions

are the Intel 128-bit vector extensions similar to AltiVec.
Work is also planned to implement the techniques in this
paper to a 16-bit Camera Link digital-based image
acquisition system.

ACKNOWLEDGMENTS
I would like to thank my colleague Dr. William Eric

Norum of the APS Controls Group for all of his
programming insights and his many contributions. I
would also like to thank the technical support staff from
Active Silicon, Inc. for their assistance with the frame
grabber hardware. One last thank you goes to the Mac
support group at the APS, who contributed many hours to
configure our systems so they worked like any other Unix
system used onsite.

REFERENCES
[1] Apple Inc, “Optimizing for the Power Mac G5,”

http://developer.apple.com/performance/g5optimizati
on.html

[2] Apple Inc., “Velocity Engine,”
 http://developer.apple.com/hardwaredrivers/ve/index.

html
[3] Apple Inc., “SSE Performance Programming,”
 http://developer.apple.com/hardwaredrivers/ve/sse.ht

ml

Proceedings of PAC07, Albuquerque, New Mexico, USA FRPMN119

06 Instrumentation, Controls, Feedback & Operational Aspects

1-4244-0917-9/07/$25.00 c©2007 IEEE

T03 Beam Diagnostics and Instrumentation

4401

