A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Yu, L.-H.

Paper Title Page
TUPMS005 Quiet Start Method in HGHG Simulation 1200
 
  • Y. Hao
    IUCF, Bloomington, Indiana
  • L.-H. Yu
    BNL, Upton, Long Island, New York
 
  Funding: Work supported by U. S. DOE under contract No DE-FG02-92ER40747 and U. S NSF under contract No PHY-0552389

Quiet start scheme is broadly utilized in Self Amplified Spontaneous Radiation (SASE) FEL simulations, which is proven to be correct and efficient. Nevertheless, due to the existing of energy modulation effect and the dispersion section, the High Gain Harmonic Generation (HGHG) FEL simulation will not be improved by the traditional quiet start method. A new approach is presented to largely decrease the macro-particles per slice that can be implemented in both time-independent and time-dependent simulation, accordingly expedites the HGHG FEL simulation especially high order harmonic cascade case and makes the multi-parameter scanning be possible.

 
TUPMS077 Injection Simulations for NSLS-II Storage Ring 1350
 
  • I. Pinayev, J. Rose, T. V. Shaftan, L.-H. Yu
    BNL, Upton, Long Island, New York
 
  Operation of the NSLS-II storage ring in the top-up mode requires highly reliable injection with low losses. In this paper we provide results of the injection simulations for the storage ring. The alignment tolerances as well as requirements for the injected beam parameters are also discussed.  
TUPMS074 Collective Effects in the NSLS-II Storage Ring 1344
 
  • S. Krinsky, J. Bengtsson, J. S. Berg, M. Blaskiewicz, A. Blednykh, W. Guo, N. Malitsky, C. Montag, B. Podobedov, J. Rose, N. A. Towne, L.-H. Yu
    BNL, Upton, Long Island, New York
  • F. Wang
    MIT, Middleton, Massachusetts
 
  Funding: This work was supported by Department of Energy contract DE-AC02-98CH10886.

A new high-brightness synchrotron light source (NSLS-II) is under design at BNL. The 3-GeV NSLS-II storage ring has a double-bend achromatic lattice with damping wigglers installed in zero-dispersion straights to reduce the emittance below 1nm. In this note, we present an overview of the impact of collective effects upon the performance of the storage ring. Subjects discussed include Touschek lifetime, intra-beam scattering, instability thresholds due to ring impedance, and use of a third-harmonic Landau cavity.

 
TUPMS083 Conceptual Design of the NSLS-II Injection System 1362
 
  • T. V. Shaftan, J. Beebe-Wang, J. Bengtsson, G. Ganetis, W. Guo, R. Heese, H.-C. Hseuh, E. D. Johnson, V. Litvinenko, A. U. Luccio, W. Meng, S. Ozaki, I. Pinayev, S. Pjerov, D. Raparia, J. Rose, S. Sharma, J. Skaritka, C. Stelmach, N. Tsoupas, D. Wang, L.-H. Yu
    BNL, Upton, Long Island, New York
 
  Funding: This work was supported by Department of Energy contract DE-AC02-98CH10886.

We present conceptual design of the NSLS-II injection system. The injection system consists of low-energy linac, booster and transport lines. We review the requirements on the injection system imposed by the storage ring design and means of meeting these requirements. We discuss main parameters and layout of the injection system components.