A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Valerio, L.

Paper Title Page
TUPAS015 Operational Aspects of the Main Injector Large Aperture Quadrupole 1685
 
  • W. Chou, C. L. Bartelson, B. C. Brown, D. Capista, J. L. Crisp, J. DiMarco, J. Fitzgerald, H. D. Glass, D. J. Harding, B. Hendricks, D. E. Johnson, V. S. Kashikhin, I. Kourbanis, W. F. Robotham, T. Sager, M. Tartaglia, L. Valerio, R. C. Webber, M. Wendt, D. Wolff, M.-J. Yang
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by Universities Research Association, Inc. under contract No. DE-AC02-76CH03000 with the U. S. Dept. of Energy.

A two-year Large Aperture Quadrupole (WQB) Project was completed in the summer of 2006 at Fermilab.* Nine WQBs were designed, fabricated and bench-tested by the Technical Division. Seven of them were installed in the Main Injector and the other two for spares. They perform well. The aperture increase meets the design goal and the perturbation to the lattice is minimal. The machine acceptance in the injection and extraction regions is increased from 40π to 60π mm-mrad. This paper gives a brief report of the operation and performance of these magnets. Details can be found in Ref**.

* D. Harding et al, "A Wide Aperture Quadrupole for the Fermilab Main Injector," this conference.
** W. Chou, Fermilab Beams-doc-#2479, http://beamdocs.fnal.gov/AD-public/DocDB/DocumentDatabase

 
THPAN117 Electron Cloud Studies at Tevatron and Main Injector 3501
 
  • X. Zhang, A. Z. Chen, W. Chou, B. M. Hanna, K. Y. Ng, J.-F. Ostiguy, L. Valerio, R. M. Zwaska
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000

Estimates indicate that the electron cloud effect could be a limiting factor for Main Injector intensity upgrades, with or without a the presence of a new 8 GeV superconducting 8GeV Linac injector. The effect may turn out to be an issue of operational relevance for other parts of the Fermilab accelerator complex as well. To improve our understanding of the situation, two sections of specially made vacuum test pipe outfitted for electron cloud detection with ANL provided Retarding Field Analyzers (RFAs), were installed in the Tevatron and the Main Injector. In this report we present some measurements, compare them with simulations and discuss future plans for studies.

 
FRPMS008 IPM Measurements in the Tevatron 3883
 
  • A. Jansson, K. Bowie, T. Fitzpatrick, R. Kwarciany, C. Lundberg, D. Slimmer, L. Valerio, J. R. Zagel
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the US Department of Energy

Two Ionization Profile Monitors (IPMs) were installed in the Tevatron in 2006. The detectors are capable of resolving single bunches turn-by-turn, using a combination of gas injection to boost the ionization signal and very fast and sensitive electronics to detect it. This paper presents recent improvements to the system hardware and its use for beam monitoring. In particular, the correction of beam size oscillations observed at injection is discussed.