A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tariq, S.

Paper Title Page
TUPAS028 Upgrades to the Fermilab NuMI Beamline 1712
 
  • M. A. Martens, S. C. Childress, N. L. Grossman, P. Hurh, J. Hylen, A. Marchionni, E. McCluskey, C. D. Moore, R. E. Reilly, S. Tariq, A. Wehmann, K. E. Williams, R. M. Zwaska
    Fermilab, Batavia, Illinois
 
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

The NuMI beamline at Fermilab has been operational since the spring of 2005 delivering high-intensity neutrino beams to the MINOS experiment. A beam power on target of 310 kW has been achieved and a total of more than 2·1020 protons have been delivered to the NuMI target. Upgrades to NuMI are planned in preparation for the future MINERvA and NOvA neutrino experiments increasing the NuMI beam power capability from 400 kW to 700 kW and then as much as 1.2 MW. An overview of the future upgrade to NuMI is presented.

 
WEPMN108 A Technique for Monitoring Fast Tuner Piezoactuator Preload Forces for Superconducting RF Cavities 2289
 
  • Y. M. Pischalnikov, J. Branlard, R. H. Carcagno, B. Chase, H. Edwards, A. Makulski, M. McGee, R. Nehring, D. F. Orris, V. Poloubotko, C. Sylvester, S. Tariq
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

The technology for mechanically compensating Lorentz Force detuning in superconducting RF cavities has already been developed at DESY. One technique is based on commercial piezoelectric actuators and was successfully demonstrated on TESLA cavities*. Piezo actuators for fast tuners can operate in a frequency range up to several kHz; however, it is very important to maintain a constant preload force on the piezo stack in the range of 10 to 50% of its specified blocking force. Determining the preload force during cooldown, warm-up, or re-tuning of the cavity is difficult without instrumentation, and exceeding the specified range can permanently damage the piezo stack. A technique based on strain gauge technology for superconducting magnets has been applied to fast tuners for monitoring the preload on the piezoelectric assembly. This paper will address the design and testing of piezo actuator preload sensor technology. Results from measurements of preload sensors installed on the tuner of the DESY Capture Cavity II tested at Fermilab will be presented. These results include measurements during cooldown, warm-up, and cavity tuning along with dynamic Lorentz force compensation.

* M. Liepe et al," Dynamic Lorentz Force Compensation with a Fast Piezoelectric Tuner" PAC2001