A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Robin, D.

Paper Title Page
TUPMN111 A Low Emittance Lattice for the Advanced Light Source 1170
 
  • H. Nishimura, S. Marks, D. Robin, D. Schlueter, C. Steier, W. Wan
    LBNL, Berkeley, California
 
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC03-76SF00098

The possibility exists of achieving significantly lower emittances in an electron storage ring by increasing its horizontal betatron tune. However, existing magnet locations and strengths in a given ring may be inadequate to implement such an operational mode. For example, the ALS storage ring could lower its emittance to one third of the current value by increasing the horizontal tune from 14.25 to 16.25. However, this would come with the cost of large chromaticities that could not be corrected with our existing sextupole magnets. We discuss such operational issues and possible options in this paper.

 
TUPMN112 ALS Top-off Simulation Studies for Radiation Safety 1173
 
  • H. Nishimura, R. J. Donahue, R. M. Duarte, D. Robin, F. Sannibale, C. Steier, W. Wan
    LBNL, Berkeley, California
 
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC03-76SF00098

We plan to commission top-off injection at the Advanced Light Source in the near future. In order to guarantee radiation safety, we have been simulating the injection process to exclude the possibility of injected electrons traveling down the user's photon beam lines. As the final stage of our simulation study, we use photon beam line CAD drawings to define the beam line's aperture in the phase space which electrons must not enter. Then we virtually inject electrons from within these phase spaces backwards into the storage ring to prove that such electrons can never get back to the real injection point under any possible scenario. This paper summarizes such inverse tracking studies.

 
TUPMN115 Creating a Pseudo Single Bunch at the ALS 1182
 
  • G. J. Portmann, K. M. Baptiste, W. Barry, J. Julian, S. Kwiatkowski, L. Low, D. W. Plate, D. Robin
    LBNL, Berkeley, California
 
  Funding: This work was supported by U. S. Department of Energy under Contract No. DE-AC03-76SF00098.

Typically storage ring light sources operate with the maximum number of bunches as possible with a gap for ion clearing. By evenly distributing the beam current the overall beam lifetime is maximized. The Advanced Light Source (ALS) has 2 nanoseconds between the bunches and typically operates with 276 bunches out of a possible 328. For experimenters doing timing experiment this bunch separation is too small and would prefer to see only one or two bunches in the ring. In order to provide more flexible operations and substantially increase the amount of operating time for time-of-flight experimenters, it is being proposed to kick one bunch on a different vertical closed orbit. By spatially separating the light from this bunch from the main bunch train in the beamline, one could potentially have single bunch operation all year round. By putting this bunch in the middle of the ion clearing gap the required bandwidth of the kicker magnets is reduced. Using one kicker magnet running at the ring repetition rate (1.5 MHz), this bunch could be permanently put on a different closed orbit. Using multiple kicker magnets, this bunch could be locally offset at an arbitrary frequency.

 
TUPMN117 Exploring the Limits of the ALS Triple Bend Lattice 1188
 
  • D. Robin, W. Wan
    LBNL, Berkeley, California
 
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC03-76SF00098

The triple bend achromat cell of the ALS has been shown to be very flexible and compact. It has been operated in a low emittance mode and a low momentum compaction mode. In fact the lattice can be operated in a large range of different stable modes. Until recently most of these recently discovered modes had not been explored or even known about. Many of these modes have potentially attractive features as compared with the present operational mode. In this paper we take a step back and look at the general stability limits of the lattice. We employ a technique we call GLASS that allows us to rapidly scan and find all possible stable modes and then characterize their associated properties. In this paper we illustrate how the GLASS technique gives a global and comprehensive vision of the capabilities of the lattice.

 
TUPMS002 Successful Completion of the Femtosecond Slicing Upgrade at the ALS 1194
 
  • C. Steier, P. A. Heimann, S. Marks, D. Robin, R. W. Schoenlein, W. Wan
    LBNL, Berkeley, California
  • W. Wittmer
    SLAC, Menlo Park, California
 
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

An upgraded femtosecond slicing facility has been commissioned successfully at the Advanced Light Source. In contrast to the original facility at the ALS which pioneered the concept, the new beamline uses an undulator (the first in-vacuum undulator at the ALS) as the radiator producing the user photon beam. To spatially separate the femtosecond slices in the radiator, a local vertical dispersion bump produced with 12 skew quadrupoles is used. The facility was successfully commissioned during the last 1.5 years and is now used in routine operation.

 
TUPMN109 A High Repetition Rate VUV-Soft X-Ray FEL Concept 1167
 
  • J. N. Corlett, J. M. Byrd, W. M. Fawley, M. Gullans, D. Li, S. M. Lidia, H. A. Padmore, G. Penn, I. V. Pogorelov, J. Qiang, D. Robin, F. Sannibale, J. W. Staples, C. Steier, M. Venturini, S. P. Virostek, W. Wan, R. P. Wells, R. B. Wilcox, J. S. Wurtele, A. Zholents
    LBNL, Berkeley, California
 
  Funding: This work was supported by the Director, Office of Science, High Energy Physics, U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, and wavelength; utilization of harmonics to attain shorter wavelengths; and precise synchronization of the x-ray pulse with laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FELs, each producing high average brightness, tunable over the soft x-ray-VUV range, and each with individual performance characteristics determined by the configuration of the FEL SASE, enhanced-SASE (ESASE), seeded, self-seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands. FELs would be tailored to specific experimental needs, including production of ultrafast pulses even into the attosecond domain, and high temporal coherence (i.e. high resolving power) beams.

 
TUPMS003 Status of the Top-off Upgrade of the ALS 1197
 
  • C. Steier, B. J. Bailey, K. M. Baptiste, W. Barry, A. Biocca, W. E. Byrne, M. J. Chin, R. J. Donahue, R. M. Duarte, M. P. Fahmie, J. Gath, S. R. Jacobson, J. Julian, J.-Y. Jung, S. Kwiatkowski, S. Marks, R. S. Mueller, H. Nishimura, J. W. ONeill, S. Prestemon, D. Robin, S. L. Rossi, F. Sannibale, T. Scarvie, D. Schlueter, D. Shuman, G. D. Stover, CA. Timossi, T. Warwick, J. M. Weber, E. C. Williams
    LBNL, Berkeley, California
 
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

The Advanced Light Source is currently being upgraded for top-off operation. This major facility upgrade will provide an improvement in brightness from soft x-ray undulators of about one order of magnitude and keep the ALS competitive with the newest intermediate energy light sources. Major components of the upgrade include making the booster synchrotron capable of full energy operation, radiation safety studies, improvements to interlocks and collimation systems, diagnostics upgrades as well as emittance improvements in the main storage ring. The project status will be discussed as well as results of major parts of the commissioning.