A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Lefevre, T.

Paper Title Page
MOPAN068 Performance with Lead Ions of the LHC Beam Dump System 308
 
  • R. Bruce, B. Goddard, L. K. Jensen, T. Lefevre, W. J.M. Weterings
    CERN, Geneva
 
  The LHC beam dump system must function safely with lead ions. The differences with respect to the LHC proton beams are briefly recalled, and the possible areas for performance concerns discussed, in particular the various beam intercepting devices and the beam instrumentation. Energy deposition simulation results for the most critical elements are presented, and the conclusions drawn for the lead ion operation. The expected performance of the beam instrumentation systems are reviewed in the context of the damage potential of the ion beam and the required functionality of the various safety and post-operational analysis requirements.  
FRPMN067 Collision Rate Monitors for LHC 4171
 
  • E. Bravin, S. Burger, C. Dutriat, T. Lefevre, V. Talanov
    CERN, Geneva
  • A. Brambilla, M. Jolliot, S. Renet
    CEA, Grenoble
  • J. M. Byrd, K. Chow, H. S. Matis, M. T. Monroy, A. Ratti, W. C. Turner
    LBNL, Berkeley, California
 
  Collision rate monitors are essential in bringing particle beams into collision and optimizing the performances of a collider. In the case of LHC the relative luminosity will be monitored by measuring the flux of small angle neutral particles produced in the collisions. Due to the very different luminosity levels at the four interaction regions (IR) of LHC two different types of monitors have been developed. At the high luminosity IR (ATLAS and CMS) fast ionization chambers will be installed while at the other two (ALICE and LHC-b) solid state polycrystalline Cadmium Telluride (CdTe) detectors will be used. The ionization chambers are being developed by Lawrence Berkeley National Lab (Berkeley CA, USA) while the CdTe monitors are being developed by CERN and CEA-LETI (Grenoble, FR) This paper describes the system with particular emphasis on the monitors based on CdTe detectors, detailed description of the ionisation chambers being available in separate papers.  
FRPMS045 Non-Destructive Single Shot Bunch Length Measurements for the CLIC Test Facility 3 4069
 
  • A. E. Dabrowski, M. Velasco
    NU, Evanston
  • H.-H. Braun, R. Corsini, S. Doebert, T. Lefevre, F. Tecker, P. Urschutz
    CERN, Geneva
 
  Funding: DOE

A non-destructive bunch length detector has been installed in the CLIC Test Facility (CTF3). Using a series of down-converting mixing stages and filters, the detector analyzes the power spectrum of the electromagnetic field picked-up by a single waveguide. This detector evolved from an earlier system which was regularly used for bunch length measurements in CTF2. Major improvements are increase of frequency reach from 90 GHz to 170 GHz, allowing for sub-pico second sensitivity, and single shot measurement capability using FFT analysis from large bandwidth waveform digitisers. The results of the commissioning of the detector in 2006 are presented.