A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Den Hartog, P. K.

Paper Title Page
TUPMN091 Planned Use of Pulsed Crab Cavities for Short X-ray Pulse Generation at the Advanced Photon Source 1127
 
  • M. Borland, J. Carwardine, Y.-C. Chae, P. K. Den Hartog, L. Emery, K. C. Harkay, A. H. Lumpkin, A. Nassiri, V. Sajaev, N. Sereno, G. J. Waldschmidt, B. X. Yang
    ANL, Argonne, Illinois
  • V. A. Dolgashev
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

In recent years, we have explored application to the Advanced Photon Source (APS) of Zholents'* crab-cavity-based scheme for production of short x-ray pulses. Work concentrated on using superconducting (SC) cavities in order to have a continuous stream of crabbed bunches and flexibility of operating modes. The challenges of the SC approach are related to the size, cost, and development time of the cavities and associated systems. A good case can be made for a pulsed system** using room-temperature cavities. APS has elected to pursue such a system in the near term, with the SC-based system planned for a later date. This paper describes the motivation for the pulsed system and gives an overview of the planned implementation and issues. Among these are overall configuration options and constraints, cavity design options, frequency choice, cavity design challenges, tolerances, instability issues, and diagnostics plans.

*A. Zholents et al., NIM A 425, 385 (1999).**P. Anfinrud, private communication.

 
TUPMN100 LCLS Undulator Production 1148
 
  • E. Trakhtenberg, T. Barsz, P. K. Den Hartog, G. S. Lawrence, E. R. Moog, S. Sasaki, I. Vasserman, M. White
    ANL, Argonne, Illinois
  • T. Becker, S. Dufresne, W. Kummerle, R. Schuermann
    Metalex Manufacturing, Cincinnati, Ohio
  • G. Goldfarb, N. Lagonsky, S. Lagonsky, S. Sorsher
    Hi-Tech Manufacturing, Schiller Park, Illinois
 
  Funding: Work supported by the U. S. Dept. of Energy, under contract numbers DE-AC02-06CH11357 and DE AC03-76SF00515.

Design and construction of the undulators for the Linac Coherent Light Source (LCLS) is the responsibility of Argonne National Laboratory. A prototype undulator* was constructed in-house and was extensively tested. The device was tunable to well within the LCLS requirements and was stable over a period of several years. Experience constructing the prototype undulator led us to conclude that with appropriate engineering design and detailed assembly procedures, precision undulators can be constructed by qualified vendors without previous undulator-construction experience. Our detailed technological knowledge and experience were transferred to the successful bidders who have produced outstanding undulators. Our production concept for the 40 3.4 m long, fixed-gap, planar-hybrid undulators with a 30 mm period is presented. Manufacturing, quality assurance, and acceptance testing details are also presented.

*LCLS Prototype Undulator Report, Argonne National Laboratory Report ANL/APS/TB-48, January 2004, R. Dejus, Editor.

 
FROBC04 Thermomechanical Design of Normal-Conducting Deflecting Cavities at the Advanced Photon Source for Short X-ray Pulse Generation 3827
 
  • B. Brajuskovic, J. T. Collins, P. K. Den Hartog, L. H. Morrison, G. J. Waldschmidt
    ANL, Argonne, Illinois
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

A normal-conducting deflecting cavity is being designed at the Advanced Photon Source (APS) as a part of the short x-ray pulse project intended to provide users with approximately 2 picosecond x-rays. The system will use two pairs of 3-cell cavities in sectors 6ID and 7ID for the generation of the x-ray pulse in the 7ID beamline. The 3-cell cavities are designed to provide the desired beam deflection while absorbing in excess of 4 kW of power from a pulsed rf system and up to 2.6 kW in the damper system of high-order mode (HOM) and low-order mode (LOM) waveguides. Since the cavity frequency is very sensitive to thermal expansion, the cooling water system is designed so that it is able to control cavity temperature to within 0.1?C. This paper describes the optimization of the thermomechanical design of the cavity based on calculation of thermal stresses and displacement caused by the generated heat loads, and presents the design of a cooling water system required for the proper operation of the cavities.

 
slides icon Slides  
FRPMN106 Progress toward a Hard X-ray Insertion Device Beam Position Monitor at the Advanced Photon Source 4342
 
  • G. Decker, P. K. Den Hartog, O. Singh
    ANL, Argonne, Illinois
  • G. Rosenbaum
    UGA, Athens, Georgia
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Long-term pointing stability at synchrotron light sources using conventional rf-based particle beam position monitoring is limited by the mechanical stability of the pickup electrode assembly. Photoemission-based photon beam position monitors for insertion device beams suffer from stray radiation backgrounds and other gap-dependent systematic errors. To achieve the goal of 500-nanoradian peak-to-peak pointing stability over a one-week period, the development of a photon beam position detector sensitive only to hard x-rays (> several keV) using copper x-ray fluorescence has been initiated. Initial results and future plans are presented.