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Abstract  
One of the challenging issues for analytically modeling 

electron sources, such as rf photoinjectors, is calculating 
time-dependent electromagnetic fields generated by the 
electron beam within a complicated conductor boundary. 
This problem can be handled self-consistently using a 
time-dependent Green’s function method. We 
demonstrate this approach for a simplified electron source 
geometry, namely a semi-infinite circular pipe with a 
cathode. Following similar Lorentz gauge approaches that 
were used for computing electromagnetic potentials in 
low frequency (<1 GHz) photoinjectors [1,2], we present 
a compact Green’s function solution for this simplified 
geometry. As an application, we show the electromagnetic 
potentials for a disk bunch of charge emanating from the 
cathode wall with acceleration parameters corresponding 
to the BNL 2.856 GHz 1.6 cell photocathode gun. [3]  

INTRODUCTION 
Currently, there are a number of analytical and numerical 
tools available for modeling electron source geometries, 
which include the effects of space-charge fields. In 
particular, the codes PARMELA [4], which incorporates 
electrostatic space-charge effects, and TREDI [5], which 
incorporates electromagnetic space-charge forces using 
Lienard-Wiechert potentials in free-space, have been 
extensively used for simulating photoinjectors.  Recently, 
analytical techniques for computing electromagnetic 
potentials in low frequency (<1 GHz)  photoinjectors have 
emerged in which bunch acceleration is assumed uniform 
and electromagnetic reflection from the cavity wall is 
negligible [1,2]. The electromagnetic potentials for the 
simplified source geometry, shown in Fig. 1, in the 
present paper were analyzed in Ref. 1 for the specific case 
of a uniform density bunch profile, which is uniformly 
accelerating in the longitudinal direction. Moreover, the 
integral form of the potentials in Ref. 1 require integration 
over rapidly oscillating terms in Fourier k-space. 

In this paper, we start by following a similar Lorentz 
gauge formulation as in Ref. 1 for the geometry in Fig. 1, 
and present solutions to the electromagnetic potentials for 
arbitrary charge density and current density in the 
longitudinal direction which utilize a compact form for 
the Green’s function in real space.  This form requires 
integration over the sources in real space-time, but has the 
advantage of explicitly showing the causality conditions 
on real and image charges. This representation can be 
useful numerically when evaluating the potentials near the 
head of the bunch when causality effects are most 
important. 

Our paper is organized as follows. In Sec. 2, the 3-D 
electromagnetic potentials are developed analytically for 
the cathode and circular pipe geometry. In Sec. 3, we use 
the potentials to numerically compute the electromagnetic 
fields for a disk-like bunch accelerating from rest off the 
cathode. In particular, the simulation parameters, 
including transverse beam size and longitudinal bunch 
motion, match the design parameters for the BNL 2.856 
GHz 1.6 cell photocathode gun. [3]  In Sec. 4, we give a 
summary of our results.  
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Figure 1: Schematic of system including conductor 
geometry and accelerating bunch. 

ELECTROMAGNETIC POTENTIALS 
A side profile of the conductor geometry under 
consideration, cathode and circular pipe, is shown in Fig. 
1. The cathode location is designated by 0=z  and the 
pipe is located at a radius of ar = . Also shown in Fig. 1 
is a charged bunch moving in the longitudinal direction, 
whose charge density and current density are specified by 
( )tr ,
r

ρ  and ( )trJ z ,
r

, respectively. The non-zero 
electromagnetic potentials within the Lorentz gauge for 
the SI unit system are given by,                                   
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For self-consistency, the sources are assumed to satisfy 
the continuity equation 
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and the potentials satisfy the Lorentz gauge condition,  

                                 01
2

=
∂
∂

+
∂
∂

z
A

tc
zφ .                       (3) 

The potentials also satisfy the appropriate boundary 
conditions at the pipe and cathode  
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The electromagnetic fields immediately follow from the 
potentials defined by Eqs. (1)-(4) using 
                               tAE ∂∂−∇−=
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and 
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    The solutions to the potentials can be derived from two 
time-dependent Green’s functions as                                             
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subject to the boundary conditions 
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   The solutions to the time-dependent Green’s functions 

in Eqs. (7) and (8) are given by [6]    
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where          
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are the transverse eigenfunctions for the Helmholtz’s 
equation in a circular pipe with Dirichlet boundary 
conditions,    
                                   ajk mnmn =⊥                           (11) 
are the corresponding eigenvalues, ( )xJ m  is the mth  
order Bessel function, mnj  is the nth positive root of 

( )xJ m , and  

                        ( ) ( )2222 zzttc ′±−′−=±λ  .                (12) 

We note that the gauge condition in Eq. (3) can be readily 
verified by using Eq. (2) along with integration by parts in 
Eq. (6). The factors ( )2

−λθ  and ( )2
+λθ  enforce the 

causality condition on the electromagnetic waves 
emanating from the bunch charge and induced image 
charges, respectively. When analyzing the potentials near 
the front of the bunch, these factors allow for rapid 
numerical convergence since only sources “sufficiently 
close” to the point of observation need to be considered.  

DISK-BEAM SIMULATION 
As an application of the electromagnetic equations 
derived in Sec. 2, we calculate potentials generated by a 
zero thickness disk bunch, which is created at the cathode 
at time 0=t  and accelerated by an external rf electric 
field. We assume that the bunch charge density and 
current density are given by      
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where ( )tz ′′  is the bunch trajectory specified by the 
following equations of motion for a charge in an rf-
electric field, 

                        ez mPdtzd =′′                             (15) 
         ( ) ( )ϕω +′′−= tzkeEdtdPz sincos0 .            (16) 

In Eqs. (13) and (14), Q is the total bunch charge and br  
is the bunch radius. In Eqs. (15) and (16), zP  is the 
relativistic longitudinal momentum, em  is the electron 
mass, e is the electron charge, 0E  is the maximum rf-
electric field and cfk π2= , fπω 2= , and ϕ  are the 
wavenumber, angular frequency, and injection phase of 
the rf-electric field.  
    As an example, we use the parameters for the BNL 1.6 
cell photocathode gun [3], i.e. GHzf 856.2= , 

mMeVE 1000 = , cma 111.4= , °= 68ϕ , 
nCQ 96.0= , and mmrb 0.1= . Fig. 2 shows a plot of 

( ) λτz ′′  (red) along with a light line (blue) versus 
tωτ = , where fc=λ is the free-space wavelength of 

the injector.  
    Using the bunch trajectory in Fig. 2, we are able to 
compute ( )tr ,

r
φ  and ( )trAz ,

r
 using Eqs. (6a) and (6b). In 

particular, we used 500≤n radial modes and numerical 
integration time-step of 001.0=τd to compute the 
potentials. Figs 3(a), 3(b), 4(a), and 4(b) show plots of  

cQrb 0
2εφωπ  and 0

2 µλπ cQrA bz  for 5.0=τ  and  
0.5=τ . We note that at 5.0=τ the bunch is located at 

( ) 044.0≅′′ λτz , and at 0.5=τ , the bunch is located at 
( ) 74.0≅′′ λτz . We also note that the first waves from the 

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 2816



side wall reach the pipe axis at approximately 0.5=τ . In 
a real photoinjector experiment, the first iris would be 
located at 25.0=λz and the second iris 75.0=λz . 

 
Figure 2: Plot of the bunch trajectory (red) and light line 
(blue) using the BNL 1.6 cell photocathode gun [1] 
parameters. 

 

 
Figure 3: Plots of (a) normalized φ  and  (b) normalized 

zA  for 5.0=τ . 

SUMMARY 
In summary, we have presented an analytical solution of 
the electromagnetic potentials inside of a cylindrical pipe 
with cathode using a compact Green’s function method. 
The  solutions   for  ( )tr ,

r
φ   and  ( )trAz ,

r
  in  the  Lorentz 

gauge were found within the framework of a time-
dependent Green’s function formulation, as was done in 
Ref. 1. However, unlike Ref. 1, our solutions are 
presented in real space rather than Fourier space for 
arbitrary charge and current density, and explicit show the 
causality conditions. This compact Green’s function form 
allows for rapid numerical convergence of the 
electromagnetic potentials, in important regimes such as 
near the front of the bunch. We demonstrated the 
effectiveness of these potentials by simulating 
acceleration of a photoinjector bunch using the parameters 
for the BNL 2.856 GHz 1.6 cell photocathode gun. In the 
future, we are planning to incorporate the effects of disk-

like iris structures to form a more realistic model of the 
photoinjector.  
 

 

 
Figure 4: Plots of (a) normalized φ  and  (b) normalized 

zA  for 0.5=τ . 

ACKNOWLEDGEMENTS 
The authors wish to thank the Indiana University 

Research SP supercomputing cluster for the usage of their 
computational facilities. 

REFERENCES 
[1] W. Salah and J.M. Dolique, Nucl. Inst. and Meth A 

447 (2004) 309. 
[2] W. Salah, Nucl. Inst. and Meth A 533 (2004) 248. 
[3] K. Batchelor et al, “Development of a High 

Brightness  Electron Gun for the Accelerator Test 
Facility at Brookhaven National Laboratory”, 
EPAC’88, Rome, June 1988. 

[4] L.M. Young (documentation by J.H. Billen), 
“PARMELA”, report LA-UR-96-1835, Los Alamos, 
1996 (rev. 2004). 

[5] L. Gianessi et al, Nucl. Inst. and Meth A 436 (1999) 
443. 

[6] M. Hess and C. S. Park, to be submitted to PR-STAB 
(2005). 

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

2817 0-7803-8859-3/05/$20.00 c©2005 IEEE


