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Abstract

The independent component analysis (ICA) is applied to
analyze simultaneous multiple turn-by-turn beam position
monitor (BPM) data of synchrotrons. The sampled data are
decomposed to physically independent source signals, such
as betatron motion, synchrotron motion and other perturba-
tion sources. The decomposition is based on simultaneous
diagonalization of several unequal time covariance matri-
ces, unlike the model independent analysis (MIA), which
uses equal-time covariance matrix only. Consequently the
new method has advantage over MIA in isolating the in-
dependent modes and is more robust under the influence
of contaminating signals of bad BPMs. The spatial pattern
and temporal pattern of each resulting component (mode)
can be used to identify and analyze the associated physical
cause. Beam optics can be studied on the basis of the beta-
tron modes. The method has been successfully applied to
the Booster Synchrotron at Fermilab.

INTRODUCTION

The transverse motion of a beam in a synchrotron is
composed of components driven by various physical fac-
tors. These components include the betatron motion,
synchrotron motion and possibly other sources. A syn-
chrotron often has many BPMs around the ring to detect
the beam transverse orbit and in many synchrotrons the
BPMs are capable of measuring the orbit on turn-by-turn
basis. The multiple simultaneous turn-by-turn orbit mea-
surements provide vast data which allow us to study the
physical factors that affect the beam. It is highly desirable
to separate the contributions of the factors and study them
individually. The model independent analysis (MIA) [1]
is a first attempt to achieve the goal. MIA is a principal
component analysis (PCA). It can be used to study coher-
ent betatron oscillations without a lattice model and is able
to reduce random noises. It has been applied to some elec-
tron storage rings successfully and is now an established
efficient beam diagnostic tool.

However, due to its PCA nature, MIA does not accom-
plish complete mode isolation. The linear coupling of beta-
tron motions can still be mixed. The synchrotron motions,
if not filter out, can also be mixed with betatron motions.
The other less-significant sources are more likely to mix
because their variances are close in strength.

In this paper we introduce the application of indepen-
dent component analysis (ICA) for multiple turn-by-turn
BPM data analysis to overcome the difficulties of MIA.
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The ICA method considers turn-by-turn BPM data as lin-
ear mixtures of independent source signals. We further as-
sume the source signals are narrowband signals. Hence
their spectra must not overlap because of the independence
and the un-equal time covariance matrices must be diago-
nal. The source signals and the mixing matrix can be found
by jointly diagonalizing the un-equal time covariance ma-
trices of the sample data with a few time-lag constants. The
spatial and temporal properties of the resulting modes can
be used to identify the origins of the source signals.

This method can successfully separate the linear cou-
pling normal modes, the synchrotron modes and other
modes. It is more robust than MIA because of the use of
more statistical information of the source signals. It is less
sensitive to influences of bad BPMs.

Applying this new method to Fermilab Booster data, we
have measured the linear lattice functions and extracted
synchrotron oscillations.

THE ICA FOR BEAM DIAGNOSIS

Suppose there are m BPMs around the ring and each
records the orbit for N turns. We put the readings of all
BPMs into an m × N data matrix x such that each row
represents the readings of one BPM. The offset of each row
is subtracted from the raw readings. The data matrix is
related with the source matrix s by

xm×N = Am×nsn×N +Nm×N (1)

where n (not known a priori) is the number of source sig-
nals, A is the mixing matrix, N contains random noises.
The un-equal time covariance matrix of source signals de-
fined by Cs(τ) ≡ 〈s(t)s(t + τ)T 〉 is diagonal because
the source signals are non-overlapping narrowband sig-
nals. The time-lag constant τ must be an integer. It fol-
lows from Eq. (1) that Cx(0) = ACs(0)AT + σ2I and
Cx(τ) = ACs(τ)AT , τ �= 0, i.e., the mixing matrix A
is the diagonalizer of the sample covariance matrix Cx,
where we have assumed the noises are white and indepen-
dent of the source signals and σ denotes the noise level.

The source signals and the mixing matrix can be found
with the Second-Order Blind Identification (SOBI) algo-
rithm [2]. First, we perform eigen-decomposition of the
sample covariance matrix Cx(0) and collect the n largest
eigenvalues into a diagonal matrix Λ1 and the associated
eigenvectors into matrix U1. The number n is chosen such
that the eigenvalues representing noise background are ex-
cluded. An intermediate “whitened” data matrix is con-
structed with ξ = Vx, where V ≡ Λ−1/2

1 UT
1 . This step

is equivalent to MIA while ξ contains its temporal vectors
and U1 contains the spatial vectors.
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Second, we compute the time-lagged covariance matri-
ces of ξ by {Cξ(τk) = 〈ξ(t)ξ(t + τk)T 〉} for a selected
set of time-lag constants τk. We form symmetric matrices
Cξ(τk) = (Cξ(τk) + Cξ(τk)T )/2 and find a orthonormal
matrix W that diagonalizes all matrices Cξ(τk) of this set,
i.e. Cξ(τk) = WDkWT , where Dk is diagonal. In prac-
tice, joint diagonalization can be achieved only approxi-
mately. Algorithms for approximate joint diagonalization
can be found in Ref. [3].

Finally, the source signals and the mixing matrix are
s = WT Vx and A = V−1W respectively, where V−1 =
U1Λ

1/2
1 . A row vector of s and the corresponding column

of A is called the temporal and spatial vector of a mode,
respectively. The properties of the temporal and spatial
vectors can help the identification of their physical origins.
For example, the betatron modes always come in pairs be-
cause each BPM sees different phases and its their temporal
vectors are oscillations with proper tunes and decoherence.
The spatial vectors of the betatron modes can be used to
calculate beta functions and phase advances. The spatial
vector of the synchrotron mode is proportional to the dis-
persion function and the temporal vector has synchrotron
tune.

The betatron function and phase advance can be derived
from the spatial vectors of the paired betatron modes

βi = a2(A2
b1,i + A2

b2,i), ψi = tan−1

(
Ab1,i

Ab2,i

)
(2)

where a is a constant depending on initial conditions. Then
dispersion Dx and momentum deviation δ(t) are related to
the spatial vector and temporal vector of the synchrotron
mode by

D = bAs, δ(t) = ss(t)/b (3)

with a constant b. The constant a, b could be “determined”
by certain calibration procedure with other measurements.
In our study, we often just scale the spatial vectors up to
compare with the beta function and dispersion of model
calculation.

We have tested the applicability of both the ICA method
and MIA with simulations [4]. The results show that MIA
modes get mixed when the source signals have close vari-
ances and ICA is free of such mixing. Because of its better
capability of mode separation, ICA is more robust under
the effect of bad BPMs. The dependence of the separation
on finite sampling is also studied.

The ICA for beam diagnosis has found applications at
Fermilab Booster and APS. Fig. 1 shows examples of the
temporal vectors for APS data. The beam was excited by
a sudden shift of synchronous phase. The spatial vectors
were used to compute the beta function and dispersion [5].

APPLICATION TO FERMILAB BOOSTER

Fermilab Booster has 48 BPMs, all of them are able to
measure turn-by-turn orbit for both transverse planes. We
have taken turn-by-turn data in two setup modes of the
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Figure 1: The temporal vectors of (a) the synchrotron
mode, (b) one of the betatron modes, of an APS data set.
Data taken by Weiming Guo at APS.

Booster. In the DC mode the beam was kept in injection
energy (400 MeV) for the whole cycle (1/30 s) and in
the AC mode beam energy was ramped from 400 MeV to
8 GeV as in normal operations. The beam was excited
by a horizontal pinger which is fired every 0.5 ms with a
pulse width of 2.2 µs, or one turn at injection. Each cy-
cle has 15200 turns (DC) or 20000 turns (AC). We often
divide the cycles into small pieces so that each piece starts
with the firing of the pinger and ends before the next firing,
about 220 turns per piece. Since we have both the hori-
zontal and vertical BPM data, we put them into one data

matrix y =
(

x
z

)
for ICA analysis. Such arrangements

help the mode separation, especially for the modes appear-
ing in both horizontal and vertical BPMs, e.g., the linearly
coupled betatron motions. The data presented in this paper
were taken after the 2003 shutdown when one of the two
extraction doglegs was re-positioned to alleviate the dog-
leg effects.

For data taken in DC mode, we have measured the beta
functions, phase advances and dispersion function. Fig. 2
shows the temporal and spatial vectors of a pair of hori-
zontal betatron modes as an example. The spatial vectors
are used to calculate the beta function and phase advances
with Eq. (2). The results are compared to the existing lat-
tice model in Fig. 3. The error bars are estimated with 20
pieces of data from two data sets. The average error bars
are 6% for σβ/β and 0.03 rad for σψ .

The temporal vector and the spatial vector of the disper-
sion mode are used to calculate ∆p

p and dispersion function
Dx as shown in Fig. 4. This mode is from a data piece
of 1000 turns right after injection. The injection energy
mismatch is ∆p

p = −0.4× 10−3 initially and is damped by
the longitudinal damper in about 300 turns. The error bars
in Fig. 4(b) are estimated with multiple data sets, which
gives σD/D = 4%. The measurements of the linear lattice
functions indicate that our existing lattice model approx-
imate the real Booster to a reasonable level yet still with
considerable discrepancies.

We have also observed instability modes in DC data sets.
Fig. 5 shows an example in the region from turn 4001 to
turn 6000. Noticeably the amplitude plots Fig. 5(a) indi-
cates this instability mode appears only in half of the ring
where the RF cavities sit. However, the cause of the insta-
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Figure 2: The betatron modes of Booster DC data. (a), (c)
spatial vectors of betatron mode 1, 2. (b) temporal vector
of mode 1. (d) FFT spectra of the temporal vectors.
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Figure 3: The measured horizontal beta function (a) and
phase advance (b) are compared to model calculations. The
phase advances in (b) is measured from one BPM to the
next.
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Figure 4: The dispersion mode. (a) the evolution of ∆p
p . (b)

the measured dispersion function compared to the existing
model.
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Figure 5: An instability mode in DC data. (a) the amplitude
A =

√
A2

1 + A2
2. (b) the temporal vector.

bility mode is not understood yet.
In AC data, the betatron modes in the cycle allow us

to track the betatron tunes throughout the cycle. The lin-
ear lattice functions can be measured. Besides the betatron
modes, we have also studied synchrotron oscillations dur-
ing the cycle. More detailed accounts are presented in Ref
[4].

CONCLUSION

We have introduced independent component analysis, an
advance signal processing method for synchrotron BPM
turn-by-turn data analysis to improve the PCA-based model
independent analysis (MIA). This new method has demon-
strated its capability in isolating the underlying physical
sources in BPM data through simulation studies and the ap-
plication to Fermilab Booster. By separating the betatron
modes we can measure the beta functions and phase ad-
vances with better precision. The linearly coupled betatron
motions are decomposed to normal modes. It also allows
the study of synchrotron motions and other factors that af-
fect the beam transverse motions. This method has the po-
tential to be a powerful diagnostic tool for synchrotrons.
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