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Abstract

The driver linac of the proposed Rare Isotope Acceler-
ator (RIA) requires a great variety of high intensity, high
charge state ion beams. In order to design and to opti-
mize the low energy beam line optics of the RIA front end,
we have developed a new parallel three-dimensional model
to simulate the low energy, multi-species ion beam forma-
tion and transport from the ECR ion source extraction re-
gion to the focal plane of the analyzing magnet. A multi-
section overlapped computational domain has been used to
break the original transport system into a number of sub-
systems. Within each subsystem, macro-particle tracking
is used to obtain the charge density distribution in this sub-
domain. The three-dimensional Poisson equation is solved
within the subdomain and particle tracking is repeated un-
til the solution converges. Two new Poisson solvers based
on a combination of the spectral method and the multigrid
method have been developed to solve the Poisson equation
in cylindrical coordinates for the beam extraction region
and in the Frenet-Serret coordinates for the bending mag-
net region. Some test examples and initial applications will
also be presented.

INTRODUCTION

The RIA linac driver requires a great variety of high
charge state, high intensity ion beams from the Elec-
tron Cyclotron Resonance (ECR) ion sources. This puts
a strong challenge not only for the design of ECR ion
sources but also for the design of low energy beam trans-
port (LEBT) systems. Computational tools help to explore
wide range of parameter space, to identify the particle loss
condition, and to optimize the system design and opera-
tion. Previous design of the LEBT depended on a two-
dimensional envelope model such as TRACE-2D [1, 2],
or a time dependent bunched beam simulation with peri-
odic boundary condition [3] or a simplified model with
infinite beam pipe length [4]. A fully three-dimensional
self-consistent simulation of multiple charge state ion beam
transport in the LEBT will help to minimize the particle
losses in such a system. Moreover, using the new Pois-
son solvers developed here and an implementation on high
performance parallel computers, we can run the simulation
with a large number of macroparticles and still have a quick
return time.
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PHYSICAL MODEL AND
COMPUTATIONAL METHODS

The low energy ion beam transport inside the LEBT is
different from the beam transport inside the RF linac. In-
side the RF linac, the beam is longitudinally bunched to
a few millimeters by the time dependent RF field. Inside
the LEBT, there is no longitudinal bunching, the particles
extend longitudinally through the whole system to form
a continuous beam. The length of beam could be from a
few meters to ten meters. To model the particle transport
in such a system, we need to solve the time-independent
Vlasov-Poisson equations including transverse boundary
conditions. A brutal force approach is to model the whole
system as one computational domain directly. However,
this is computationally impractical if a good numerical pre-
cision is required. A very high numerical resolution is
needed in order to accurately model the plasma surface at
the exit of ECR ion source. On the other hand, this is also
not necessary since the particles at the beginning may not
affect the particles near the end due to the large longitu-
dinal to transverse aspect ratio and the shielding of trans-
verse conducting wall. Hence, we can divided the whole
beam into multiple overlapped segments. For each seg-
ment, we solve a time-independent Vlasov-Poisson equa-
tions with Dirichlet boundary conditions on the left end
and Neumann boundary conditions on the right end. The
left end of the segment is chosen inside the domain of pre-
ceding segment so that the potential and the density distri-
bution obtained in the preceding segment are used as the
left boundary conditions of this segment. For each seg-
ment, an iterative particle-tracking method has bean used
to obtain the converged solution of the time-independent
Vlasov-Poisson equations. Here, we have used a 2nd order
leap-frog algorithm to solve the Lorentz equation for each
particle subject to the external field and the space-charge
force. The particles are deposited onto grid to obtain the
charge density distribution on the mesh. After the particles
have passed through the local domain, the Poisson equation
is solved. The new electric potential is used to calculate the
space-charge field and the particle tracking is redone using
this new field. This procedure is repeated for a number of
times until the potential change is below some specified er-
ror level and the particle trajectories converge.

Solution of the Poisson Equation in Cylindrical
Coordinates

A major section of the LEBT system, such as extrac-
tion region and solenoid focusing region, has a geometry of
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round shape with azimuthal symmetry. For such a system,
we can write the Poisson equation in cylindric coordinates
as:
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Here, φ denotes the electrostatic potential, ρ the charge
density function, r and z the radial and longitudinal dis-
tance. Since both the electric potential and the charge den-
sity are periodic function of θ, we can approximate the po-
tential φ and source term ρ as:

ρ(r, θ, z) =
Nm/2−1∑

m=−Nm/2

ρm(r, z) exp(−imθ) (2)

φ(r, θ, z) =
Nm/2−1∑

m=−Nm/2

φm(r, z) exp(−imθ) (3)

Substituting equations 2 and 3 into the original Pois-
son equation 1, we obtain a group of decoupled two-
dimensional partial differential equations in (r, z) as:
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The boundary conditions at the radial edge are assumed
as Dirichlet boundary conditions with given potential from
the conducting wall or as Neumann boundary conditions if
there is no conducting wall. The above equations are solved
using a finite difference multigrid method.

The multigrid method is a method to solve linear and
nonlinear algebraic equations using multiple grids with dif-
ferent discretization resolution on each grid. By changing
the resolution of the discretization, the low frequency errors
in the residues of the iteration can be removed on a coarser
grid, while the high frequency errors can be resolved on a
fine grid. The computational cost of this method scales lin-
early with the number of grid points and the convergence
rate will not degrade with finer mesh size.

The above solver is first tested with a uniform round
beam inside a conducting pipe. Here, we have used a Neu-
mann boundary conditions at both ends. The numerical
solution together with the analytical solution is given in
Fig. 1. We see that the agreement between the numeri-
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Figure 1: Radial electric field from the numerical solution
and from the analytical solution.

cal solution and the analytical solution is very good. As a

second test, we calculated the potential inside the extrac-
tion region with a 20 KV plasma electrode, a −1 kV puller
electrode, and a 0 KV ground electrode. The electric poten-
tial on the axis as a function of distance is given in Fig. 2
together with the solution using another code WARP [6].
It is seen that the two solutions agree with each other very
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Figure 2: Electric potential on the axis from the new solver
and from the WARP solver.

well.

Solution of the Poisson Equation in Frenet-Serret
Coordinates

The preceding Poisson solver is applicable for a round
system with azimuthally symmetric geometry. For some
element in the LEBT, such as bending magnet, the sys-
tem has a rectangular cross-section with different horizon-
tal bending angles. The bending magnet provides not only
a transverse focusing of the ion beam but also a selection of
different charge states for further transport. In this element,
we will use a Frenet-Serret coordinate since this coordinate
reduces to the normal Cartesian coordinate when the curva-
ture is zero. For perfect conducting plates, the electric po-
tential will vanish on vertical walls. We can approximate
the potential and the charge density distribution as:

ρ(x, y, z) =
Nm∑

m=1

ρm(x, z) sin(mπy/a) (5)

φ(x, y, z) =
Nm∑

m=1

φm(x, z) sin(mπy/a) (6)

where a is the full vertical aperture width. Substituting
these equations into the Poisson equation and using the or-
thogonal condition of sine functions, we obtain a group of
decoupled two-dimensional partial differential equations:
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The resulting two-dimensional partial differential equa-
tions are solved using the same finite difference multigrid
method described before.

As a test of this Poisson solver, we calculate the elec-
tric field inside a bended conducting pipe with a longitudi-
nal uniform and transverse Gaussian distribution beam and
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different bending curvatures. Fig. 3 shows the horizontal
electric field as a function of y at x = 0 for different bend-
ing curvatures. We see that as the curvature approaches to
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Figure 3: Horizontal electric field along the vertical axis
with a bended rectangular pipe with different curvatures.

zero, the horizontal field vanishes due to the symmetry of
the beam density distribution.

APPLICATIONS

The simulation tool developed here has been applied to
the study of the ion beam transport out of an supercon-
ducting ECR ion source, VENUS, at Lawrence Berkeley
National Laboratory [5]. It consists of an extraction re-
gion, a glaser solenoid focusing lens, and a bending an-
alyzing magnet for charge selection. The total length is
about 3.5 meters. As a first example, we have studied
the three-dimensional space-charge effects of a 3 cm par-
allel beam passing through the bending magnet. This is
done by comparing the simulation results from the three-
dimensional code developed here with a two-dimensional
simulation results of the WARP code. Here, the WARP
simulation includes only the transverse space-charge ef-
fects. The transverse rms size of the beam as a function
of the distance is given in Fig. 4 from 1 mA current and
in Fig. 5 for 10 mA current. We see that before the fo-
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Figure 4: Transverse rms beam size as a function of dis-
tance from the 3D simulation and 2D simulation for a beam
with 1 mA current.

cusing waist, both simulations agree very well. After the
focusing waist, there is only small difference between the
two simulations for the 1 mA case. This suggests that the
longitudinal density variation is not significant for such a
system with 1 mA current. A two-dimensional simulation
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Figure 5: Transverse rms beam size as a function of dis-
tance from the 3D simulation and 2D simulation for a beam
with 10 mA current.

might be good enough. However, with a large 10 mA cur-
rent, the longitudinal density variation around the focusing
waist is no longer small. There, we observe some differ-
ences between the three-dimensional simulation results and
the two-dimensional simulation results.

As another example of applications, we have simulated
a 2 mA H+ and H+

2 ion beam transport through the LEBT.
Here, we have used 20, 480 macroparticles and five over-
lapped segments in the simulation. The transverse rms size
as a function of distance is given in Fig. 6. With the chosen
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Figure 6: Transverse rms beam size as a function of the
VENUS LEBT distance.

bending magnet strength for the H+, all the H+
2 particles

are lost inside the magnet.
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