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Abstract

BEPC will be upgraded into BEPCII, and the luminosity
will be about 100 times higher. We developed a three di-
mensional strong-strong PIC code to study the beam-beam
effects in BEPCII. The transportation through the arc is the
same as that in Hirata’s weak-strong code. The beam-beam
force is computed directly by solving the Poisson equa-
tion using the FACR method, and the boundary potential is
computed by circular convolution. The finite bunch length
effect is included by longitudinal slices. An interpolation
scheme is used to reduce the required slice number in sim-
ulations. The standard message passing interface (MPI) is
used to parallelize the code. The computing time increases
linearly with (n + 1), where n is the slice number. The
calculated luminosity of BEPCII at the design operating
point is less than the design value. The best area in the tune
space is near (0.505,0.57) according to the survey, where
the degradation of luminosity can be improved.

INTRODUCTION

BEPCII is an upgrading scheme from BEPC. It is a dou-
ble ring machine. Following the success of KEKB, the
crossing scheme was adopted in BEPCII, where two beams
collide with a horizontal crossing angle 2 × 11mrad. The
design luminosity of BEPCII is 1.0 × 1033cm−2s−1 at
1.89GeV, about 100 times higher BEPC [1] .

The beam-beam interaction is one of the most impor-
tant limiting factors determining the luminosity of storage
ring colliders. Due to the complexity of the interaction,
computer simulations are necessary to study it quantita-
tively. There have been various types of computer codes on
this topic, such as weak-strong simulation [2] and strong-
strong simulation [3, 4, 5] . Historically, the weak-strong
simulation which is not self-consistent has been employed
in order to simulate the effect in a reasonable computing
time. The strong-strong simulation, which requires large
amounts of computer resources, has recently become fea-
sible due to the fast progress in computing power. Now the
two dimensional simulation without finite bunch length ef-
fect can be done using a personal computer in a reasonable
time. While a supercomputer is still necessary in the three
dimensional strong-strong simulation. The strong-strong
codes now have a reliable predictive capability of realistic
beam-beam interaction and the simulation results show a
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good quantitative agreement with the experimental obser-
vations [6] .

In order to include the crossing angle effects, the beam-
beam simulation has to take the bunch length into account.
We have developed a new three dimensional strong-strong
particle-in-cell (PIC) code SBBE, which was based on our
previous work [7] . The code was written in standard C
and parallelized with the standard message passing inter-
face (MPI). The model and algorithm used in the code are
explained in the following, and we also present the simula-
tion results of beam-beam effects in BEPCII.

MODEL AND ALGORITHM

The two colliding beams are both represented by macro-
particles in SBBE. A macro-particle is treated as a single
electron or positron dynamically. We initialize the macro-
particles with the six-dimensional Gaussian distribution ac-
cording to the optics parameters at the interaction point (IP)
and the nominal emittance of the beam.

The one-turn map of macro-particles consists the follow-
ing two parts:

1. Beam-beam interaction near IP. The bunch length ef-
fect is included by longitudinal slices. A slice in-
teracts with the opposing slices one by one. When
the interaction between two slices is considered, the
potentials at two longitudinal points generated by a
slice are computed directly and respectively by solv-
ing the Poisson equation. The potentials between the
two points are calculated by linear interpolation [8].
The macro-particles in a slice are kicked by the op-
posing slices, and drift between two collision points
near IP. When there is a crossing angle, the Lorentz
Boost [9] is employed to treat the collision.

2. Transportation through the arc. Single particle dy-
namics in three dimensional space is taken into
account. We only consider the linear map with
synchrotron radiation, which is following Hirata’s
BBC [10].

Beam-Beam Potential

Given a charge distribution ρ(x, y), the potential φ(x, y)
generated by the beam satisfies the Poisson equation(

∂2

∂x2
+

∂2

∂y2

)
φ(x, y) = −ρ(x, y)

ε0
. (1)

The solution of the potential φ can be expressed as

φ(x, y) =
1

2πε0

∫
dx′dy′G(x− x′, y − y′)ρ(x′, y′), (2)
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where G(x, y) is the Green function

G(x, y) = −1
2

ln[x2 + y2]. (3)

The transverse dimension of the beam is generally much
smaller than that of the pipe near IP. Therefore the open
boundary condition is assumed. The two dimensional field
solver is following Cai [5], and we compute the bound-
ary potential by a FFT method. We represent the potential
φ(x, y) by its values at discrete set of points

xj = x0 + jhx (j = 0, 1, . . . , J)
yl = y0 + lhy (l = 0, 1, . . . , L) , (4)

where hx and hy are horizontal and vertical grid spacing
respectively. We write φj,l for φ(xj , yl). The points where
j = 0, j = J , l = 0 or l = L are boundary points. Here
we describe the method by introducing how to compute the
potential φ0,l where l = 0, . . . , L − 1. Following (2), φ0,l

can be written as

φ0,l =
1

2πε0

J−1∑
m=1

L−1∑
n=1

Cm,nGm,|l−n|

=
1

2πε0

J−1∑
m=1

φm
0,l (l = 0, . . . , L− 1), (5)

where Cm,n is the charge on point (xm, yn), Gm,n is the
value of Green function G(mhx, nhy), and φm

0,l is defined
as

φm
0,l =

L−1∑
n=1

Cm,nGm,|l−n| (l = 0, . . . , L− 1). (6)

Cm,n and Gm,n are extended respectively as

Cm,n = 0 (L ≤ n ≤ 2L− 1), (7)

Gm,n =
{

arbitrary (n = L)
Gm,2L−n (L < n ≤ 2L− 1) . (8)

With the extended series, φm
0,l can be rewritten as a formal-

ism of circular convolution

φm
0,l = Cm,l ⊗Gm,l (l = 0, . . . , 2L− 1). (9)

The value of φm
0,l in (9) is equal to that in (6) for 0 ≤ l ≤

L− 1, and meaningless for L ≤ l ≤ 2L− 1. The discrete
Fourier transforms (DFT) of Cm,l and Gm,l are evaluated
as

Ĉm,k̂ =
2L−1∑
l=0

Cm,l exp(−i
π

L
lk) (k = 0, . . . , 2L− 1),

(10)

Ĝm,k̂ =
2L−1∑
l=0

Gm,l exp(−i
π

L
lk) (k = 0, . . . , 2L− 1).

(11)

The DFT of φm
0,l can be expressed as

φ̂m
0,k̂

= Ĉm,k̂Ĝm,k̂ (0 ≤ k ≤ 2L− 1). (12)

The solution of φm
0,l is obtained by the inverse DFT

φm
0,l =

1
2L

2L−1∑
k=0

φ̂m
0,k̂

exp(i
π

L
lk) (0 ≤ l ≤ 2L− 1).

(13)
In the technique, we compute φm

0,l in (5) by three times
FFT instead of computing it directly by (6). Since the di-
mension of mesh and grid number are both constant during
the course of tracking, Gj,l is constant and only two times
DFT is needed in fact. The potentials on other boundaries
can be computed by a similar method. After the bound-
ary potentials are known, the problem is converted into a
Dirichlet one of the Poisson equation. The five-point dif-
ference scheme is used to approximate the two dimensional
Laplacian operator

φj−1,l + φj+1,l − 2φj,l

h2
x

+
φj,l−1 + φj,l+1 − 2φj,l

h2
y

= −ρj,l

ε0
.

(14)
The FACR (Fourier analysis and cyclic reduction) method
is used to solve equations (14), then we can obtain the po-
tentials on the inside grid points.

Parallel Scheme

The longitudinal boundaries of slices are chosen so that
the number of macro-particles in each slice is uniform.
Due to the synchrotron oscillation, the z value of a parti-
cle varies each turn. That is to say the particles in one slice
may enter the others of the same bunch. For high energy
electron or positron storage ring, the synchrotron tune is
generally very small (∼ 0.01), that is to say the oscillation
frequency is very low. It is reasonable for us to assume
that it is impossible for a particle in one slice to jump into
not-adjacent ones the next turn when the slice number is
not very large. A slice exchanges macro-particles with its
adjacent ones at IP and before collision each turn in our
code.

The computing time increase linearly by a factor of n2,
where n is the number of slices in one bunch. A supercom-
puter is necessary for the three dimensional beam-beam
simulation. The standard message passing interface (MPI)
is used to parallelize the code. It’s natural to represent
one slice with one MPI node: the macro-particles’ data
in a slice is stored in the corresponding node. When two
slices collide, their corresponding nodes assign the charges
of macro-particles to grid points respectively, exchange the
smoothed charge distribution on grid, and then the beam-
beam force experienced by a slice can be computed by
its corresponding node. Since a slice needs to exchange
macro-particles with the adjacent ones, the computing time
increases linearly by a factor of (n + 1) not n. The parallel
scheme is shown in Figure 1. The scheme is not scalable as
Qiang’s [11] , while it is efficient and suitable for small or
medium-scale computer clusters.
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Figure 1: Parallel scheme. One MPI node is used to repre-
sent one slice. The IO node is used to collect data and save
them to a file.

SIMULATION RESULTS

We studied the beam-beam effects in BEPCII by simu-
lation using the code. The design parameters of BEPCII
is shown in Table 1. In the simulation, 300,000 macro-

Table 1: Design parameters of BEPCII
E 1.89 GeV εx/εy 144 / 2.2 nm
C 237.53 m σz 1.5 cm
Nb 93 σe 5.16× 10−4

Ib 9.8 mA νx/νy 6.53 / 7.58
ξy 0.04 νs 0.034
θc 2× 11 mrad τx/τy 31553 / 31553 turn
β∗

x/β∗
y 1 m / 1.5 cm τs 15777 turn

particles are used to represent one bunch which is divided
into 5 slices. The transverse plane is divided into 128×256
grids with total size of 30σx × 60σy .

Tune Survey

It’s well known that the operating point strongly affects
the beam-beam interaction. Here we investigate how the
tunes affect the luminosity and try to find the best area
in the tune space. By experience, the strong-strong sim-
ulation was done in the area (0.505 ≤ νx ≤ 0.545,
0.55 ≤ νy ≤ 0.595) with a step of 0.005. Figure 2 shows
the contour plot of luminosity versus tune. The best area is
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Figure 2: Luminosity versus transverse tune. The luminos-
ity is normalized by the design value.

near (0.505,0.57) where the luminosity is about 80% of the
design value.

0.00

0.01

0.02

0.03

 0  2  4  6  8  10  12  14  16  18  20

ξ y

bunch current (mA)

Figure 3: Beam-beam parameters versus bunch current.

Beam-Beam Limit

The saturation phenomenon of the beam-beam parame-
ter is called the beam-beam limit, which means that the
luminosity varies linearly with bunch current. Here the pa-
rameter is calculated using the luminosity as follows

ξy =
2reβy

Nγ

L

frep
. (15)

Figure 3 shows the simulation results for various bunch
currents. As seen in the figure, ξy reaches maximum
(∼ 0.025) near 13mA, and tapers when the current is fur-
ther increased.

CONCLUSION

We have developed a new parallel strong-strong beam-
beam code, which is used to study the effects in BEPCII.
The simulation results show that the calculated luminosity
is less than the design value. Further study need be done to
optimize the machine.
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