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Abstract 
In this paper, we consider the contribution of potential 

energy to beam dynamics as simulated by PARMELA at 
low energies (10-30MeV).  We calculate the potential 
energy of the relativistic electron beam using the static 
coulomb potential in the rest frame (the first order 
approximation as used in the PARMELA code). We 
found that the potential energy contribution to the beam 
dynamics could be very significant, particularly with the 
high charge beams generated by an RF photocathode 
gun.  Our results show that when the potential energy is 
counted correctly and added to the kinetic energy from 
PARMELA, the total energy is conserved.  Results of 
potential and kinetic energy simulations for short beams ( 
~1mm ) at various charges ( 1-100nC ) generated by a 
high current RF photocathode gun are presented. 

INTRODUCTION 
During numerical simulations of the beam properties of 

the new Argonne Wakefield Accelerator photocathode 
gun[1], we observed a suspicious energy gain for high-
charge, short-bunch electron beams in a drift space.  The 
energy gain in the drift space is repeatable and 
proportional to the charge of the beam.  After eliminating 
any possible cause of numerical errors, the energy gain 
from the drift space is still found to be significant.  

Usually, the potential energy of a relativistic electron 
beam is negligible compared to its kinetic energy.  
Therefore, the observed energy gain in the drift space 
seemed unphysical and raised concerns about the 
accuracy of the PARMELA space charge calculation 
routine.  Since we depend on PARMELA simulations in 
predicting the beam quality before we set up the 
diagnostic system and perform measurements, it would be 
troublesome if PARMELA did not calculate the space 
charge contribution correctly. 

It was suggested to us [2] that the change in kinetic 
energy may be due to a corresponding change in potential 
energy.  To answer the question about the accuracy of 
PARMELA space charge calculation and regain our 
confidence in the predicted beam qualities, we calculated 
the potential energy of a relativistic electron beam up to 
the first order approximation.  By adding the potential 
energy of the beam together with its kinetic energy, the 
total energy of beam is conserved in drift space.  The 
assumption about the potential energy of the relativistic 
beam turns out to be not true and the doubts about the 
PARMELA space charge calculation are dismissed. 

POTENTIAL ENERGY OF RELATIVISTIC 
BEAM 

It is only possible to use a Lagrangian description of the 
interaction of two or more charged particles with each 
other at nonrelativistic velocities.  The Lagrangian is 
supposed to be a function of the instantaneous velocities 
and coordinates of all the particles.  When the finite 
velocity of propagation of electromagnetic fields is taken 
into account, this is no longer possible, since the values of 
the potentials at one particle due to the other particles 
depend on their state of motion at retarded times.  Only 
when retardation effects can be neglected is a Lagrangian 
description of the system of particles possible [3]. 

Lowest-Order Relativistic Corrections 
If only the lowest-order relativistic corrections are 

desired, the interaction Lagrangian for two charged 
particles including lowest-order relativistic effects would 
be [2]: 
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By summing up the interaction Lagrangian of all pairs 
of particles in the beam, we can get the potential energy of 
a relativistic beam up to its lowest order in the lab frame. 

Equation (1) could be used to calculate the potential 
energy of a beam directly in the lab frame.  It can be 
interpreted as the Coulomb potential plus the magnetic 
potential between two currents with relativistic 
corrections. 

But the default time step output of the PARMELA 
simulation doesn’t contain complete information about the 
velocities of particles [4].  There are some difficulties in 
applying equation (1) to obtain the potential energy of 
beam from PARMELA simulation without changing the 
output to a type which requires considerable disk space 
and massive IO operations. 

Alternative approaches 
  If we consider the potential of particles in the 

reference frame where the particle is at rest, the particle 
will see only the Coulomb force and thus the potential 
energy can be easily calculated using only the Coulomb 
potential in their rest frame 
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where (x1,y1,z1), (x2,y2,z2) are the coordinates of q1 
and q2 in the rest frame of q1.  By transforming this rest 
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frame potential energy into the lab frame, we can then 
obtain the potential energy measured in lab frame.  
Equation (2) would be exact if the coordinates are 
measured simultaneously in the rest frame of q1 or q2.   
But we can only obtain the coordinates in lab frame from 
the code simultaneously at a given time.  According to the 
special theory of relativity, the coordinates of particles 
measured simultaneously in the lab frame, when 
transformed into the rest frame of particles, will become 
coordinates measured at different time.  This is where the 
approximation is required.  

Transformation of Potential Energy Between the 
Rest Frame and the Lab Frame  

 According to special theory of relativity, the 4-
momentum of particles between two reference frames is 
related by 
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from which we then have  
 cPEE zttt

r γβγ −=  (4) 
and 
 cPEcP ztttz

r γγβ +−=  (5) 

Assume that the particle has an energy gain of rE∆  
and the momentum changes by ),,( r

z
r

y
r

x PPP ∆∆∆  after 
a space charge impulse.   By transforming this changed 
energy momentum vector back into lab frame, we then 
have  
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By summing up (6) for all particles, we obtain 
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Substituting (5) into (7), we then have 
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In the rest frame of the particles, the momentum should 
be conserved as there is no external force and the 
relativistic effect from the relative motion between 
particles is negligible.  Taking into consideration 
momentum conservation in their rest frame of the 
particles, equation (8) becomes 
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When there is no external force applied to the system, 
the total kinetic energy gain should only come from the 
reduction of potential energy and thus we have the 

transform relation between potential energy in the rest 
frame and lab frame: 

 rUU γ=                                    (10) 

Here rU is the Coulomb potential energy of particles in 
their rest frame,  and U is the potential energy of particles 
in the lab frame which includes contributions from both 
Coulomb and magnetic potentials. 

NUMERICAL RESULTS 
In this section, we use equation (2) to calculate the 

potential energy of each particle pair in their rest frame 
and then translate the potential energy back into the lab 
frame using equation (10). We then sum up the lab frame 
potential energy of all the particles to obtain the potential 
energy of the beam.  The kinetic energy of beam is 
obtained by summing up the kinetic energy of each 
particle in the beam.  The total energy of beam is then 
obtained by adding the beam potential energy to the beam 
kinetic energy. 

Results for the AWA Photocathode Gun 
Results from PARMELA simulations with beam 

intensities of 1 nc, 33 nc and 100 nc for our new 
photocathode gun are given in this section.   
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Figure 2. PARMELA simulation result for 33nc beam 
for our new photocathode gun 
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Figure 1.  PARMELA simulation result for 1nc beam 
for our new photocathode gun 
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Figure 1 shows the result for a 1 nc beam.  The 
potential energy is very small compared to the kinetic 
energy and thus there is no observed kinetic energy gain 
in the drift space. 

Figure 2 shows the result for a 33 nc beam.  The 
potential energy of the beam is about 2% of its kinetic 
energy.  The beam kinetic energy changes by 0.44% while 
drifting from 1 m to 3 m, but the total energy only 
changes by 0.03%. 

Figure 3 shows the simulation result for a 100 nc beam.   
As shown in the figure, the potential energy is about 3.8% 
of beam kinetic energy.   The kinetic energy increases by 
about 1% while drifting from 1 m to 2.7 m.  The total 
energy changes by only about 0.16%. 

From figure 1 to figure 3, notice that the kinetic energy 

gain in the drift space increases with the amount of charge 
in the beam which agrees with Coulomb’s law.   The total 
energy is conserved after accounting for the potential 
energy. 

Further Validation 
As shown above, the total energy of beam is conserved 

in a drift space for our new photocathode gun.   For 
further validation, we studied results for beams with 
different initial energies.   

Figure 4 shows the result of a beam with 4 MeV initial 

energy.   As shown in the plot, the potential energy of the 
beam is about 10% of the kinetic energy at the beginning.  
After drifting for 250 cm, the beam kinetic energy 

increased by about 8.8% while the total energy changed 
only by about 0.38%. 

Figure 5 shows the result for an 8 MeV monoergic 
beam.  The initial potential energy is about 7.2% of the 
initial kinetic energy.  After drifting for a distance of 300 
cm, the kinetic energy increased by 5.2% while the total 

energy only changed by about 0.6%.   
Figure 6 shows the result for a beam with 16 MeV 

initial energy.   In this figure, the beam kinetic energy 
increased by about 2% while the total energy changed 
only about 0.1% after drifting a distance of 300cm. 

The kinetic energy gain in drift spaces observed in 
PARMELA simulations is results from the conversion of 
the potential energy of the beam.  The potential energy of 
a high charge low energy beam is not negligible.  After 
the beam potential energy is counted, the total energy is 
conserved.  Doubts about the accuracy of this aspect of 
PARMELA simulation should be dismissed. 
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Figure 3:  PARMELA simulation result for 100nc 
beam from our new photocathode gun 
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Figure 4: PARMELA simulation result for a monoergic 
4 MeV beam. 
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Figure 5: PAMELA simulation result for beam with 
8MeV mono initial energy.

9.90E+12

1.00E+13

1.01E+13

1.02E+13

1.03E+13

1.04E+13

1.05E+13

1.06E+13

0 50 100 150 200 250 300
z(cm)

K
in

et
ic

 &
 T

ot
al

 E
ne

rg
y

(M
eV

)

0.E+00

1.E+11

2.E+11

3.E+11

4.E+11

5.E+11

6.E+11

Po
te

nt
ia

l E
ne

rg
y 

(M
eV

)

Total Energy
Kinetic Energy
Potential Energy

 
Figure 6: PARMELA simulation result for a beam 
with mono initial energy of 16MeV 

SUMMARY  

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

3443 0-7803-8859-3/05/$20.00 c©2005 IEEE


