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Abstract

We investigate the nonlinear coupling between breathing
and quadrupole-like oscillations in the dynamics of intense
beams propagating in a uniform magnetic focusing field. It
is shown that finite amplitude breathing oscillations of an
initially round beam may destabilize quadrupole-like os-
cillations, heavily affecting stability and the shape of the
beam. This is a potential mechanics for beam particle loss
in such systems.

INTRODUCTION

A key issue to be overcome in the development of high-
intensity accelerators and vacuum electronic devices is the
prevention of particle beam losses. In order to achieve that,
a crucial ingredient is a better understanding of the beam
transport stability. Many studies have been made on the
linear stability of uniform and periodically focused beams
[1, 2, 3, 4]. They detected the occurrence of different insta-
bility modes which compromise beam transport for certain
parameters of the system. Of particular relevance for ax-
isymmetric solenoidal focusing is the breathing mode that
induces increasing-amplitude axisymmetric oscillations of
the beam envelope around its matched (equilibrium) value;
and the quadrulope-like mode that induces elliptic oscilla-
tions of the beam, breaking its symmetry [2]. Nonlinear
stability analysis were also performed but restricted to ax-
isymmetric beams [5].

In this paper, we analyze the nonlinear stability of beams
taking into consideration nonaxisymmetric effects. We in-
vestigate the nonlinear coupling between breathing modes
and quadrupole-like modes based on envelope equations. It
is shown that finite amplitude breathing oscillations caused
by some sort of mismatch, such as the one induced by cur-
rent oscillations in microwave sources [6], may drive un-
stable quadrupole-like oscillations for an initially quasi-
axisymmetric beam. In this case, the beam starts devel-
oping an elliptical shape with a consequent increase in its
size along one direction. This may induce beam losses,
which are enhanced if conducting wall effects are taken
into account [7], and may also induce a detuning in the
wave-beam interaction in high-power microwave tubes.
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THE MODEL

We consider a thin, continuous beam propagating with
average axial velocity βbcêz along an uniform solenoidal
magnetic focusing field B(x) = Bzêz , where c is the speed
of light in vacuo. Although we restrict our analysis to an
uniform focusing, the results are expected to be valid for
periodic focusing too, as long as smooth-beam approxima-
tions are valid [4]. Since we are dealing with solenoidal
focusing, it is convenient to work in the Larmor frame of
reference [4], which rotates with respect to the laboratory
frame with angular velocity ΩL = qBz/2γbmc, where q,
m and γb = (1 − β2

b )−1/2 are, respectively, the charge,
mass and relativistic factor of the beam particles. The trans-
verse cross section of the beam is assumed to be an ellipsis
centered at x = 0 = y which rotates with angular veloc-
ity ΩL such that its semi-axes are parallel to fixed x− and
y-axes of the Larmor frame. In the paraxial approximation
the equations that dictate the beam envelope evolution are

r′′x + σ2
0 rx −

2K

rx + ry
− ε2

r3
x

= 0, (1)

r′′y + σ2
0 ry −

2K

rx + ry
− ε2

r3
y

= 0, (2)

where s = z is the propagation distance, the prime de-
notes derivative with respect to s, rx and ry are the ellipsis
semi-axes radii, σ0 = qBz/2γbβbmc2 is the vacuum phase
advance per unit axial length, K = 2q2Nb/γ3

b β2
b mc2 is the

beam perveance, Nb is the number of particles per unit ax-
ial length, and ε is the unnormalized emittance of the beam.
There is a particular solution of the envelope equations (1)
and (2) for which rx = ry = r0 = const. This corresponds
to the so called matched solution for which a circular beam
of radius r0 = [K + (K2 + 4σ2

0ε2)1/2]1/2/(2σ2
0)1/2 pre-

serves its size throughout the transport. Linear stability cal-
culations show that small amplitude oscillations around r0

are always stable [2]. Our purpose here is to investigate
what happens when finite amplitude oscillations are taken
into consideration.

NONLINEAR STABILITY ANALYSIS

We first note that Eqs. (1) and (2) can be derived from a
Hamiltonian formalism

H = Hx(rx, px) + Hy(ry, py)− 2K log(rx + ry), (3)

where

Hξ =
p2

ξ

2
+

σ2
0 r2

ξ

2
+

ε2

2r2
ξ

, (4)

,
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r′ξ = ∂H/∂pξ = pξ, p′ξ = −∂H/∂rξ, (5)

ξ = x, y. It is clear from Eq. (3) that for negligible space-
charge (K → 0), rx and ry dynamics are decoupled and
nonlinear instabilities are absent.

We are interested in the stability of axisymmetric beams
with rx(s) ≈ ry(s) as they undergo finite amplitude
breathing oscillations around r0. It is thus convenient to
introduce new canonical variables defined as

X± =
rx ± ry√

2
, P± =

px ± py√
2

(6)

Note that X+ and P+ are sensitive to symmetric oscil-
lations where rx and ry oscillate in phase – breathing
modes; on the other hand, X− and P− are sensitive to anti-
symmetric oscillations where rx and ry oscillate with op-
posite phases – quadrupole-like modes. The dynamics is
then dictated by the following hamiltonian

H = H+(X+, P+)+H−(X−, P−)+HC(X+,X−), (7)

where

H+ =
P 2

+

2
+

σ2
0 X2

+

2
−K log X2

+, (8)

H− =
P 2
−
2

+
σ2

0 X2
−

2
, (9)

HC = 2ε2
X2

+ + X2
−

(X2
+ −X2

−)2
. (10)

Observe that when emittance effects are negligible (ε→ 0),
the coupling Hamiltonian HC vanishes. In this case, the
symmetric and anti-symmetric oscillations become uncou-
pled and integrable, and instabilities are absent. Thus, we
note that in both limiting cases – when emittance effects
are negligible or when space-charge effects are negligible
– the instability vanishes. In the new variables the matched
solution is given by X+(s) = X+0 ≡ [K + (K2 +
4σ2

0ε2)1/2]1/2/σ0, X−(s) = P−(s) = P+(s) = 0. This
corresponds to the minimum energy H , obtained by im-
posing that the Hamiltonian derivatives with respect to all
canonical variables vanish. In this sense, mismatched os-
cillations are excess energy given to the system. In general,
the free energy may appear as oscillations in both symmet-
ric and anti-symmetric degrees-of-freedom, and the nonlin-
ear coupling given by HC may induce exchange of energy
between the two modes. Hence, an initially round beam
undergoing breathing oscillations may, in principle, start
developing a quadrupole-like instability, becoming ellipti-
cal.

To investigate this issue we examine the solutions ob-
tained by numerically integrating Eqs. (1) and (2). The
analysis is simplified if we normalize quantities according
to

σ0s→ s, (σ0/ε)1/2X± → X±, K/(σ0ε)→ η. (11)

Then, η is the only parameter in the equations and mea-
sures the relative strength of space-charge to emittance ef-
fects – η � 1 is an emittance-dominated beam, η � 1,
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Figure 1: Poincaré Plots for the phase-space (X−, P−);
η = 3.0, ν = 2.0 (a) and ν = 2.4 (b).

is an space-charge dominated beam. From what was dis-
cussed, both limits η → 0 and η → ∞ are integrable
and stable. We begin by analyzing the (X+, P+;X−, P−)
phase-space. Because this is a two-degrees of freedom
system, Poincaré Plots come in order. We choose to plot
(X−, P−) each time X+ is maximum, which is sufficient
to ensure uniqueness of trajectories in our plots. In Fig. 1,
we present phase-space plots obtained for η = 3.0 and dif-
ferent values of the mismatch amplitude ν. In the plots
the axisymmetric solution corresponds to a fixed point at
the origin X− = P− = 0. In panel (a), for ν = 2.0,
the phase-space presents some nonlinear features, such as
resonant islands. Notwithstanding, the resonances are far
from the fixed point and does not compromise its stabil-
ity because nearby trajectories just rotate around it with no
increase in X− and P− amplitudes. However, if we in-
crease the mismatch amplitude to ν = 2.4, as in panel (b),
we notice that the axisymmetric solution becomes unsta-
ble and any small ellipticity of the beam will grow to large
X−. This is illustraded in Fig. 2, where the envelope evo-
lution is presented for a case whith the same parameters as
in Fig. 3(b) and an initial ellipticity of the beam given by
rx(0)/ry(0) = 1.01. It is clear that a strong quadrupole in-
stability is going on because the ratio rx/ry quickly grows
up to 3.13 after just 7 mismatched oscillations of the beam
at s = 25.4. Note, as well, that the size of the beam along
the x direction increases more than 30% of its initial value
due to the instability.
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Figure 2: Envelope evolution rx(s), ry(s) for an unsta-
ble case. The parameters are the same as in Fig. 1(b) with
rx(0)/ry(0) = 1.01.

In qualitative agreement with the model discussed pre-
viously, the phase-space analysis indicates that there is a
threshold mismatch amplitude νth above which instability
takes place. To determine with more accuracy νth and how
it varies with η, we adopt the following procedure. For
a given η, we numerically integrate over a long propaga-
tion length sf the coupled envelope equations for initial
conditions of the form X+(0) = νX+0, P+(0) = 0, and
J0 ≡ [X2

−(0) + P 2
−(0)]/2 � 1. If during the integration

J(s) ≡ [X2
−(s) + P 2

−(s)]/2 exceeds J0 by a large fac-
tor λ (J(s) > λJ0) we consider the solution to be unsta-
ble; if not, the solution is considered stable. By ratcheting
up ν from 1 we determine νth(η) as the minimum value
for which the solution is unstable. Specifically, we take
sf = 100, J0 = 10−3, and λ = 100. The results are pre-
sented in Fig. 3 by the circles connected by a solid curve.
νth increases in both limits η → 0 and η → ∞, as ex-
pected, presenting a minimum νth ≈ 1.96 close to η = 1.
For η < 1, it steeply increases; hence, the quadrupole-like
instability is expected to have little effect on tenuous beams
where space-charge effects are small. On the other hand,
νth increases much slower for η > 1. In fact, it grows
less then 30% of its minimum value as we move to very
intense beams with η = 20.0. Therefore, devices that oper-
ate with space-charge dominated beams undergoing finite
amplitude mismatched oscillations are likely to be affected
by the instability.

CONCLUSIONS

We have analyzed the nonlinear stability of beams in
magnetic focusing fields taking into consideration nonax-
isymmetric effects. In particular, we investigated the non-
linear coupling between breathing modes and quadrupole-
like modes using envelope equations. It was shown that
finite amplitude breathing oscillations caused by some
sort of mismatch, such as the one induced by current
oscillations in microwave sources [6], may drive un-
stable quadrupole-like oscillations for an initially quasi-
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Figure 3: Threshold values of the mismatch amplitude for
the onset of quadrupole-like instability, νth vs. η.

axisymmetric beam. In this case, the beam starts devel-
oping an elliptical shape with a consequent increase in its
size along one direction.
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