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Abstract

We present some tests of a new prototype three-
dimensional (3d) self magnetic field solver in the finite-
element gun code MICHELLE. The first test is a fixed ray
of current in a square drift tube. The magnetic field con-
verges linearly or quadratically with element size when us-
ing a linear or quadratic basis, respectively. The second
test is a relativistic axisymmetric laminar beam expanding
freely in a round drift tube. The self-consistent solution
for the particle trajectories is accurate. The third test trans-
ports a beam in a uniform external magnetic field. There
is no indication of beam filamentation. The computational
costs for the self magnetic field solver are higher than for
the Poisson solver, but the costs are still acceptable in many
applications.

INTRODUCTION

We have recently implemented a prototype 3d self
magnetic field solver in the finite-element gun code
MICHELLE [1][2]. The new solver employs edge ba-
sis functions [3] in the curl-curl formulation of the finite-
element method to compute the magnetic vector potential
on unstructured grids. A novel current accumulation algo-
rithm [4] takes advantage of the unstructured grid particle
tracker to produce a compatible source vector, with which
the singular matrix equation is easily solved by the conju-
gate gradient (CG) method.

The prototype code employs the incomplete set of linear
and quadratic edge basis functions on tetrahedral, hexahe-
dral, prism and pyramid elements, although the quadratic
basis on pyramid elements needs further development. The
code only works with the unstructured grid particle tracker
at this time. It does not yet work with MICHELLE’s Boris-
like structured grid particle tracker.

The boundary conditions, n̂×A = 0, are appropriate for
short pulsed beams where the surface currents and mag-
netic fields have no time to significantly diffuse through
conductors. The normal component of the self magnetic
field will be zero (n̂ ·B = 0) on conducting boundaries.

We describe three test cases below. The first case checks
the field solver’s computation of the magnetic vector poten-
tial A and the corresponding magnetic field B given a fixed
current source. The second and third cases check the accu-
racy of particle trajectories in the self consistent solution,
with the latter case just checking for beam filamentation.

∗Work supported by the Office of Naval Research.
† enelson@lanl.gov

We conclude with some brief comments on computational
costs.

A FIELD SOLVER TEST: ONE
RAY IN A SQUARE DRIFT TUBE

The first test case is a fixed line of current (a ray) parallel
to the z-axis of a square drift tube: (x, y) ∈ [0, 1]× [0, 1].
An analytic solution for this essentially two-dimensional
(2d) problem is obtained with conformal mapping. A
Green’s function is shown in Fig. 1.

The model geometry for the first series of tests is a cube
meshed with all four 3d element types. All six faces of the
cube are conductors. The elements are rotated, flipped and
reordered to check that the vector potential and magnetic
field are invariant to these symmetry operations. This veri-
fies the implementation in one important way.

The model geometry for the second series of tests is one
quarter of the unit square: (x, y) ∈ [0, 1/2] × [0, 1/2].
There is one hexahedral cell in the z direction with peri-
odic boundary conditions applied in z: z ∈ [0, h] where
h = 1/2n is the element size and n is the number of hex-
ahedral cells or edges along the model’s x or y axis. The
hexahedral cells are busted into a regular mesh of the var-
ious element types as desired. A four-fold rotational peri-
odicity about the center (x, y) = (1/2, 1/2) completes the
model. The single ray of current passes along the center.

The magnetic field converges linearly or quadratically
with element size with linear or quadratic basis functions,
respectively. The magnetic vector potential also converges
to our analytic solution for this model, but this is not a re-
quirement as the curl-curl formation we employ does not
fix a particular gauge for the potential.

Fig. 2 shows the convergence of By at the observation
point (x, y) = (1/4, 1/2) when using a linear basis on a
mesh of tetrahedral elements. The observation point is on
the edge or vertex of a number of tetrahedra, in which the
field at the observation point differs. All of these field val-
ues are plotted in Fig. 2, with the solid curves connecting
values from tetrahedra similarly oriented with respect to
the observation point. Smooth convergence curves are thus
obtained.

The field values in the tetrahedra adjacent to the observa-
tion point can be averaged, yielding the two dashed curves
in Fig. 2. The interpolation errors partially cancel and yield
second order convergence. Such partial cancellation occurs
with the linear basis but not with the quadratic basis.

Fig. 3 shows the convergence of B at an arbitrarily cho-
sen observation point. The observation point is not on the
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Figure 1: Normalized Green’s function for the magnetic vector potential on the unit square, where ϑ 1 is the first Jacobi
elliptic theta function. Source: Mathematica function gallery.
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Figure 2: With a linear basis on a regular mesh of tetrahe-
dral elements, the magnetic field component By(1/4, 1/2)
converges linearly with element size. The text explains the
curves.

re
la

tiv
e

er
ro

r
of

B

10−6

10−5

10−4

10−3

10−2

10−1

100

1
1

2
1

linear basis
quadratic

(x, y, z) = (0.429, 0.239, 0.252)

10−3 10−2 10−1

element size h

Figure 3: With a linear basis on a regular mesh of tetrahe-
dral elements, the magnetic field B at an arbitrarily cho-
sen point converges linearly with element size. With a
quadratic basis, the field converges quadratically.

boundary of a tetrahedral element. The convergence is lin-
ear or quadratic depending on the basis used, but the error
is not a smooth function of element size as the observation
point appears at pseudo-random locations within a tetrahe-
dral element. One infers a linear or quadratic error bound
in this case.

A SELF CONSISTENT TEST:
EXPANDING RELATIVISTIC BEAM

To test the self-consistent solution found by the gun
code, we let an axisymmetric relativistic laminar electron
beam expand freely in a round drift tube. A simple the-

h = 0.25 m

γβ = 1 (212 kV)

K = 0.02

Figure 4: An axisymmetric relativistic laminar beam ex-
pands freely for 10 m in a round drift tube. Particles are
colored by energy.

ory [5] is good for small generalized perveance K . We
drift a 1 m initial radius beam for 10 m or 20 m inside a 2 m
radius drift tube. The beam at its waist is injected at one
end of the drift tube. The injected beam’s transverse parti-
cle spacing is h/5, where h is the nominal element size. A
10 m example is shown in Fig. 4.

The agreement with the simple theory is good. Fig. 5 is a
10 m simulation showing the max and rms beam radius in-
creases in agreement with theory. Fig. 6 is a set of 20 m
simulations that show the individual particle trajectories
converge close to the approximate theoretical result. The
greatest error is near the beam edge, where field smoothing
happens to reduce the electric and magnetic fields acting on
the particles. This error gets smaller as the mesh is refined.

The gun code converges well to the self consistent solu-
tion, taking no more cycles than for a similar perveance
nonrelativistic beam transport problem solved with only
Poisson’s equation.

A BEAM FILAMENTATION TEST:
BRILLOUIN BEAM TRANSPORT

We check for beam filamentation [6] by transporting the
above beam in an external magnetic field under nominally
Brillouin flow conditions. We have yet to observe any beam
filamentation transporting the 1 m radius beam for 20 m at
various beam energies and currents. An example is shown
in Fig. 7. The code still converges well.
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Figure 5: The simulation’s max and rms beam radius agrees
with the simple theory for an axisymmetric laminar freely
expanding beam. The generalized perveance is K = 0.02.
The simulation’s nominal element size is h = 0.125 m.
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Figure 6: For three meshes, the radial expansion factor at
z = 10 m for individual rays is plotted against initial radius.
The plots show that the greatest error is near the beam edge,
but the expansion does converge close to the approximate
theoretical result (dashed line) as the mesh is refined. The
generalized perveance is K = 0.005.

COMPUTATIONAL PERFORMANCE

Self magnetic field requires additional memory and time.
Accumulating current and including self magnetic field in
the particle tracker adds 10% to the particle tracking time.
The finite element matrix and vectors are a factor of 8
larger than those for Poisson’s equation. In a 2 GB pro-
cess, MICHELLE can normally handle a 5M tetrahedral
cell mesh but with self magnetic field it can only handle 2M
tetrahedral cells. The time spent in the unpreconditioned
conjugate gradient (CG) solver for self magnetic field is a
factor of 11–35 (depending on the problem size relative to
memory cache) over that for the diagonally preconditioned
Poisson solve. This factor will also be larger if the mesh
quality is poor.

As an example, the beam transport model above with
element size h = 0.25 m has 228K tetrahedra and 1459
particles. Running 45 cycles with relative CG solver tol-
erances of 10−10 takes 20 minutes on a three year old PC:

h = 0.25 m

γβ = 1 (212 kV)

K = 0.02

Figure 7: A foreshortened view of a 1 m radius beam
transported 20 m without beam filamentation. The darker
shaded particles trace the beam rotation.

a Dell Precision 530 with a 2.4 GHz Intel Xeon processor
and 400 MHz RDRAM. Running 20 cycles with relative
CG solver tolerances 10−5 gives the same result to 5 digits
in 9.4 minutes.

CONCLUSION

Tests have demonstrated that the new prototype 3d self
magnetic field solver obtains accurate self consistent so-
lutions with reasonable computational costs. This encour-
ages us to further develop the 3d solver, and also to for-
mulate and develop a corresponding 2d solver. The lat-
ter solver will differ significantly from the current counting
techniques employed by most gun codes.
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