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INTRODUCTION

As reviewed in Ref. [1] and [2], the existence of the
transverse Lorentz force induced by radial acceleration of
the particles on a circular orbit was first pointed out by Tal-
man [3]. For a line bunch (with zero transverse extent),
this force displays logarithmic divergence due to local con-
tributions, namely, the singular contribution of the nearby
particle interaction. For a bunch with finite transverse size,
this logarithmic divergence is removed; however, the local
contributions cause the curvature-induced transverse col-
lective force to have sensitive dependence on the particle's
transverse offset from the design orbit, as depicted in Fig.
1 of Ref. [3]. Later Lee pointed out [4] that for a line
coasting beam, the effect of the logarithmic divergence of
the curvature-induced transverse collective force is largely
cancelled by the effect of the change of kinetic energy (in-
duced by the same transverse collective force for the coast-
ing beam case). Some following studies [5, 6, 7, 2] con-
clude that this cancellation, discussed earlier for a coast-
ing beam, also applies for general bunched beam under
relativistic motion on a curved orbit. As summarized in
Ref. [1], the transverse dynamics of a test particle in the
electron bunch is determined by (1) the radial collective
force F⊥(t) and (2) the deviation of the kinetic energy from
the design energy ∆E(t) = E −E0:
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Here the third term in Eq. (3) is denoted as centrifugal
space charge force:

F CSCF = eβsAs/r. (4)

It turns out that for the two driving terms in Eq. (1), the
effect of the F CSCF term in Eq. (3) is largely cancelled by
the effect of the −eΦ(t) term in ∆E of Eq. (2). This is
shown by rearranging terms in Eq. (1):
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The essence of the cancellation effect is that in Eq. (9)
both As(t) and Φ(t) are dominated by the same local con-
tributions (see details in Discussions), hence they are well
cancelled in Gc, as discussed analytically in Sec. 3.2.2 of
Ref. [2] and as shown by numerical results demonstrated in
Ref. [7]. As discussed earlier [2, 7], Gv and Gr are related
to effective forces which are majorly contributed by nonlo-
cal interactions, and G0 represents the effect of the initial
energy condition of the test particle.

Recently, controversies of the cancellation effect are
brought up in Ref. [1], and possible misconceptions are
pointed out. In the following, we list several points raised
in Ref. [1] concerning the curvature-induced transverse
force and the cancellation effect. Since these are indeed
points that easily cause confusion, we seek to clarify them
through discussions based on the above basic equations,
and show how they can be perceived from the viewpoint
of the cancellation picture.

DISCUSSIONS

1. The logarithmic singularity in F⊥ comes from the
choice of particular density distributions. It can be
removed for a bunch with finite transverse size.

This is a true statement. However, even though the sin-
gularity is removed for a finite bunch, the mechanism
which causes the logarithmic divergence of F⊥ for a
line bunch, namely, the local contribution by the nearby
particle interaction (see item 4), still causes the sensi-
tive dependence of F⊥ on the particle's transverse off-
set. This transverse sensitivity of F⊥ for a finite size
beam, as shown in Fig. 1 of Ref. [3] or Fig. 1 of Ref. [7],
is the subject of concerns for its possible deteriorating
effect on particles' transverse dynamics in storage rings
[3] or in a bunch compression chicane. The cancellation
effect mainly refers to the cancellation of this singular
contribution to F⊥ by nearby particle interaction, which
gives rise to the transverse sensitivity of F⊥ undesirable
for bunch transverse dynamics.

2. The head-tail contribution to F⊥, which has a sud-
den jump at the magnet entrance, was not accounted
for in the cancellation theory and in other previous
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analyses.
Actually this head-tail contribution to F⊥, which has
been included in many previous analyses and numeri-
cal simulations, is mainly the head-tail part of F CSCF in
Eq. (4). It is not emphasized in the cancellation study
because its effect on the transverse dynamics is can-
celled by the potential energy effect.

The inclusion of both tail-head and head-tail interac-
tion in Ref. [3] is indicated in Eq. (8) of Ref. [3], where
the limit of integration “refers to front and back of the
bunch”, rather than being confined only to source par-
ticles on the back of the test particle. Similarly, in
the analysis of F⊥ and its cancellation for a coasting
beam, the integrations over ranges of source particles
in Eqs. (31) and (33) of Ref. [4] are for angles from 0 to
2π (as can be verified), also including the interactions
from both front and back of the test particle. More de-
tailed analysis of this head-tail part of F⊥ can be found
in Eqs. (37) and (38) of Ref. [9].

Note that for two on-orbit particles, the head-tail force
given in Eqs. (14) of Ref. [1] is exactly the head-tail
(also front-back [8] in this case) part of F CSCF in Eq. (4)
(1/4πε0 is for unit conversion) for βs = 1 and r = R.
Using Lienard-Wiechert potential for As and Φ, one has
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with ∆z � 2|s−s′| the longitudinal distance of the two
particles. For the discussions of F CSCF in Sec. 3.2.2 of
Ref. [2], |∆θ| = |s − s′|/R is used, referring to both
back-front (s′ ≤ s) and front-back (s′ ≥ s) interaction.
The sudden jump of F CSCF at the magnet entrance, as
shown in Fig. 1 of Ref. [1] for the example case, was
earlier discussed in Sec. 2.2 of Ref. [2] to imply that the
“centrifugal space charge force” represents the inertial
effect for the potential energy of the test particle due
to collective interaction, in the same way as the sud-
den turn-on of the usual centrifugal force represents the
inertial effect of the particle's kinetic energy. The sud-
den jump for head-tail part of F⊥ being different from
that for the tail-head part (see Figs. 1 and 2 of Ref. [1])
is because (a) the tail-head part of F⊥ has an effective
transverse force (F eff

r of Eq. (8) or Eq. (3)) in addition to
F CSCF, and (b) the retardation relation differs for head-
tail (especially front-back) and tail-head interaction.

One should note that in Eq. (9), similar to F CSCF, the
term eΦ(t)/r also has the head-tail contributions (for
example, see Eq. (10)) as well as the tail-head part, and
the factor 1/r causes a sudden jump of this term when
the test particle enters from a drift (R = ∞) to a circu-
lar orbit (R finite), in a similar way as F CSCF does. The
sensitive dependence of F⊥ on the transverse offset of a
test particle with respect to the bunch, for both the head-
tail and tail-head part of F⊥ as shown in Figs. 1 and 2
of Ref. [1], is mainly caused by the contribution of local
(s′ → s and |x′−x| → h) interactions. Since in Eq. (9),

As and Φ are dominated by the same singular contribu-
tions (see item 4 below) and the sudden jump behavior,
the combined effects of eAs(t)/r and eΦ(t)/r on the
transverse dynamics are cancelled in Gc.

3. Since F̂⊥ has a sudden jump at the entrance of a
magnet while Φ̂ does not, as shown in Fig. 3 of
Ref. [1], there is no effective cancellation between
F̂⊥ and Φ̂.

The cancellation is between the two terms in Gc of
Eq. (9), namely, F CSCF and eΦ(t)/r. It can also be con-
sidered as the cancellation between the transverse sen-
sitive part of F⊥ and eκΦ(t)/(1 + κx), with the design
curvature κ(s) = 1/R(s) (more detail see Ref. [2]).
The sudden jump of the latter term occurs as the bunch
enters from drift κ = 0 to a circular orbit κ = 1/R.
However, in Fig. 3 of Ref. [1], the comparison is
between F⊥ and eΦ/R for constant R. Thus this com-
parison incorrectly represents the cancellation for the
entrance problem.

4. Gc � 0 has only been shown by macroparticle sim-
ulations.

The analytical argument of Gc � 0 can be found in
Sec. 3.2.2 of Ref. [2] for test particles embedded in a
continuous distribution. Let t be an independent vari-
able, and x = x(x, y, s) in a Frenet coordinate frame
[2] (see Ref. [12] for dynamics formulation using bunch
coordinates). For the bunch charge distribution ρ(x, t)
and average velocity distribution u(x, t) � c es(s),
with es(s′) · es(s) = cos[(s − s′)/R], and for t′ =
t−|x(t)−x′|/c, the (Lorentz gauge) retarded potential
terms in Eq. (9) are

As(t) = As(x(t), t)

� e

∫
ds′dx′dy′ cos

(
s′ − s(t)

R

)
ρ(x′, t′)
|x′ − x(t)| (11)

Φ(t) = Φ(x(t), t) � e

∫
ds′dx′dy′

ρ(x′, t′)
|x′ − x(t)| . (12)

Transverse sensitivity arises from local interaction con-
tained in the singular integrand ρ(x′, t′)/|x′ − x(t)|
when |s′ − s(t)| � 1, and |x′ − x(t)| is approximately√

(s′ − s(t))2 + (x′ − x(t))2 + (y′ − y(t))2. (13)

The two terms in Gc (Eq. (9)), eAs/r and eΦ/r, nearly
cancel, because they both are dominated by the same
local interaction contributions, as can be seen from
Eqs. (11) and (12) when cos[(s − s′)/R] � 1. Since
the local contributions to both terms are mainly re-
lated to the same bunch charge distribution ρ(x, t) at
t, which can be a general bunched beam or a coasting
beam, the cancellation applies to a general ultrarela-
tivistic moving charge distribution going through the
magnetic bends.

5. Even if Gc � 0, there will be anyway a strong
head-tail contribution in G0 that cannot be can-
celled away.
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This is a true statement. The term in G0 containing
the head-tail contributions is eΦ(0)/r in Eq. (6), and
it indeed has sensitive dependence on the test parti-
cle's transverse position in the bunch which cannot be
cancelled away. However, unlike the centrifugal space
charge force F CSCF (which is cancelled by eΦ(t)/r in
Eq. (9)), this term has no direct impact on the the bunch
transverse emittance for an achromatic bending system.

First, it is understood that for a rigid line bunch as
studied in Ref. [1, 10], the local contributions to Φ(t)
and to Φ(0) are about the same. So when As(t) is
cancelled by Φ(t), there is Φ(0) added elsewhere; thus
there is no obvious cancellation. A clearer picture may
be obtained when the bunch evolution over time and
particle dynamics advance are taking into account. For
example, if the test particle in Figs. 1 and 2 of Ref. [1]
is a part of the bunch with γ(t) � γ0, it cannot always
remain at the same relative transverse position with re-
spect to the ultrarelativistic rigid bunch.

Second, for an evolving bunch, as the test particle's
transverse position within the bunch changes, the trans-
verse force and potential exerted on the particle change
with time. The transverse sensitive part of the two
terms in Eq. (9), F CSCF and eΦ(t)/r, cancel, because
they have almost the same functional dependence on
time (due to the nearly identical local contributions dis-
cussed in item 4). If not cancelled, they could poten-
tially cause transverse emittance growth for an acro-
matic bending system, such as a magnetic chicane in
which the charge distribution is longitudinally com-
pressed and transversely stretched in dispersive regions.

Third, unlike F CSCF, eΦ(0) in G0 is determined fully
by x(t = 0) and ρ(x′, t′) for t′ ≤ 0. From a sim-
ulation point of view, Φ(0) for each particle needs to
be computed only once at the entrance of the beamline
of interest. Together [γ(0)mc2 + eΦ(0)] impacts the
transverse dynamics as the initial (canonical) energy,
where the two terms can be independent from each
other. Therefore, even though it has the nearby parti-
cle singular contribution (including the head-tail part),
eΦ(0) in Eq. (6) can be considered as a modification to
the initial kinetic energy γ(0)mc2, which indeed has an
additional transverse effect in dispersive regions (just as
any initial energy offset does), yet to the first order of
optics, does not cause transverse emittance growth for a
bunch going through an acromatic bending system [7].

Note that in Ref. [4], the equilibrium orbit for each par-
ticle is set up using its canonical energy γ(Re)mc2 +
eΦ(Re), and the cancellation discussed in Ref. [4] for a
storage ring is referenced to this equilibrium orbit.

6. The cancellation scheme is a regrouping of F⊥ +
∆E/r, which can be done to any pair of quantities.

As discussed above, the two cancelled terms in Gc

(Eq. (9)) both have singular local contributions with
head-tail and tail-head parts. If not cancelled, they can

potentially cause transverse emittance degradation due
to the fact that these terms vary in dispersive regions as
the bunch evolves with time. In contrast, the remain-
ing terms have different features: G0 depicts the effect
of initial canonical energy; Gv and Gr [11] in Eqs. (7)
and (8) mainly depend on the nonlocal back-front inter-
action, with some residual transverse sensitivity which
is different in magnitude and behavior compared to the
two terms which are cancelled.

SUMMARY

As remarked in Ref. [2], when the self-consistent
dynamics is treated with both the transverse and longitu-
dinal interactions taken into account, the canonical formu-
lation, which explicitly reveals the cancellation effect, is
completely equivalent to the Lorentz force approach with
the cancellation implicitly taken care of. Here Trafic4 is a
good example that one does not need the cancellation effect
to solve realistic problems [1]. However, in the CSR study,
due to the complexity of the problem, sometimes one effect
(such as the head-tail part of F⊥) is emphasized without
taking into account the other effect (such as the head-tail
part of eΦ(t)/r) which is strongly correlated to the former
one). Viewing the interaction process from a different an-
gle may sometimes be instructive in this regard, which also
allows further analysis [12] and simulations. The cancella-
tion theory shows that the transverse emittance is related to
the change of kinetic energy and the transverse force. Since
the time dependent parts of the singular local contributions
to these two terms are oppositely correlated, after reduc-
tion, only the effective forces have impact on the transverse
emittance growth.
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