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Abstract 
 A new equilibrium theory for a large-aspect-ratio 

ellipse-shaped charged-particle beam in a non-
axisymmetric periodic permanent magnet focusing field 
has been developed recently [1]. A periodic beam 
equilibrium solution is obtained numerically from a set of 
generalized envelope equations. It is shown that the beam 
edges are well confined in both transverse directions, and 
that the equilibrium beam exhibits a periodic small-
amplitude twist as it propagates. A two-dimensional 
particle-in-cell (PIC) code, PFB2D and a three-
dimensional trajectory code, OMNITRAK [2] are used to 
verify the theoretical predictions in the paraxial limit. The 
influence of the beam image charge due to a conducting 
wall is assessed via both sets of simulations. 

  

INTRODUCTION 
High-intensity ribbon (thin sheet) beams are of great 

interest in the design and operation of particle 
accelerators, such as storage rings and rf and induction 
linacs, as well as vacuum electron devices, such as 
klystrons and traveling-wave tubes with periodic 
permanent magnet (PPM) focusing [1, 3 and refs therein], 
because of several remarkable properties. First, they can 
transport large amounts of beam currents with reduced 
intrinsic space-charge forces and energies. Second, they 
couple efficiently to rectangular rf structures. This 
combination of the space charge reduction and efficient 
coupling allows efficient rf generation in vacuum 
electronic devices, and efficient acceleration in particle 
accelerators. Third, elliptic beams provide an additional 
adjustable parameter (i.e., the aspect ratio) which may be 
useful for better matching a beam into a periodic focusing 
channel. 

An equilibrium theory has been developed [1] for an 
elliptic cross-section space-charge-dominated beam in a 
non-axisymmetric periodic magnetic focusing field. A 
paraxial cold-fluid model is employed to derive 
generalized envelope equations which determine the 
equilibrium flow properties of ellipse-shaped beams with 
negligibly small emittance. A matched envelope solution 
is obtained numerically from the generalized envelope 
equations, and the results show that the beam edges in 
both transverse directions are well confined, and that the 
angle of the beam ellipse exhibits a periodic small-
amplitude twist. Two-dimensional (2D) particle-in-cell 
(PIC) simulations with the Periodic Focused Beam 2D 

(PFB2D) code show good agreement with the predictions 
of equilibrium theory as well as beam stability. 

Both the equilibrium theory and the PFB2D simulations 
predict a periodic twist of the orientation of the semi-
major and semi-minor axes of the elliptic beam as it 
propagates longitudinally. Because of this, the beam 
boundary can no longer strictly be considered that of an 
elliptic cylinder, but takes a more complicated, axially 
twisting form. At each longitudinal position, however, the 
equilibrium theory and the PFB2D code both assume a 
longitudinally invariant beam (oriented at the local value 
of the twist angle) for the purposes of electric field 
calculations. While it can be argued that the field 
corrections introduced by a proper treatment of the 
twisted structure will be negligible for small twist angles, 
a quantitative assessment of these effects is lacking. 

The three-dimensional trajectory code, OMNITRAK, is 
capable of resolving the 3D structure of the beam while 
self-consistently calculating the resultant space-charge 
electric fields. We employ it here for three purposes: 
firstly, to assess the impact of the varying twist angle on 
beam dynamics through corrections to the self-fields, 
secondly, as an independent verification of the envelope 
solution, and thirdly, as a benchmark for the PFB2D 
simulation code. 

EQUILIBRIUM THEORY 
We consider a high-intensity, space-charge-dominated 

beam, in which kinetic (emittance) effects are negligibly 
small. The beam can be adequately described by cold-
fluid equations. In the paraxial approximation, the steady-
state cold-fluid equations for time-stationary flow 
( 0=∂∂ t ) in cgs units are [1, 4] 
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where zs = , yx yx eex ˆˆ +=⊥ , ⊥⊥ ∂∂=∇ x/ , q  and m  

are the particle charge and rest mass,  respectively, bn  is 

the particle density, ⊥V  is the transverse flow 

velocity, ( ) 2121
−

−= bb βγ  is the relativistic mass factor, 

use has been made of constcV bzz =≅= ββ / , c  is the 

speed of light in vacuum, and the self-electric field 
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sE and self-magnetic field sB  are determined from the 

scalar potential sφ  and vector potential z
s
zA ê , i.e., 

ss φ⊥−∇=E  and z
s
z

s A eB ˆ×∇= ⊥ . We seek solutions to 

Eqs. (1)-(3) of the form [4] 
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In Eqs. (5) and (6), yx yx ~~ ˆ~ˆ~ eex +=⊥  is a transverse 

displacement in the twisted coordinate system illustrated 
in Fig. 1; ( )sθ  is the twist angle of the ellipse; ( ) 1=Θ x  if 

0>x and ( ) 0=Θ x  if 0<x ; and the functions ( )sa , 

( )sb , ( )sxµ , ( )syµ , ( )sxα , ( )syα  and ( )sθ  are to be 

determined self-consistently [1]. 
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Figure 1: Laboratory and twisted coordinate systems 
showing the elliptical beam envelopes a(s) and b(s) and 
the twist angle θ(s). 
 

Using the expressions above and following the 
technique in [1, 4], it can be shown that both the 
equilibrium continuity equation (1) and force equation (3) 
can be reduced to a set of generalized beam envelope 
equations [4] in the dynamical variables ( )sa , ( )sb , 

( ) dsdaasx /1−≡µ , ( ) dsdbbsy /1−≡µ , ( )sxα , ( )syα  and 

( )sθ . These envelope equations can be integrated 
directly, subject to periodic boundary conditions, and a 
Newton’s method search applied in order to find matched 
solutions of the sort shown in Figure 2 for a 6:1 aspect 
ratio beam of semi-major axis 3.73=a mm and 

62.0=b mm. This beam corresponds to the nonrelativistic 
example of Ref [1] at a voltage of 2.29 kV and with a 
current of 0.11 A focused by a 1.9 cm period non-
axisymmetric periodic magnetic field in a paraxial 
representation. 
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Figure 2: The envelope equations are directly integrated to 
obtain plots of the elliptical envelope semi-major radius 
a(s) (thick line), and semi-minor radius b(s) (thin line) are 
shown as a function of the propagation distance s. 

SIMULATION 
The envelope equations do not incorporate the effects 

of image charge, however, they are included in the 
PFB2D particle-in-cell code and in the 3D OMNITRAK 
code. In Figure 3, the dashed lines show the envelopes as 
computed by a PFB2D calculation incorporating image-
charge effects from the conducting wall boundaries of a 
12 mm x 12 mm beam tunnel. We note that the presence 
of the beam tunnel does not severely affect the beam. 
Additional scalloping is seen as compared to the envelope 
solution of Figure 2, but this is at a manageable level.  
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Figure 3: The rms envelopes are computed in a 12 mm x 
12 mm rectangular beam tunnel using the PFB2D code 
(dashed lines) and the 3D OMNITRAK code (solid lines) 
with paraxial magnetic fields. The elliptical envelope 
semi-major radius a(s) (thick lines), and semi-minor 
radius b(s) (thin lines) are shown as a function of the 
propagation distance s. 
 

The solid lines in Figure 3 indicate the envelopes as 
computed using the OMNITRAK code. We notice further 
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beam scalloping when compared with the PFB2D code 
results, however it is not clear whether this effect is due to 
the incorporation of 3D effects or merely a result of 
additional numerical errors, since the 3D code, by 
necessity, must use a coarser mesh than the 2D code. 
Nonetheless, the simulations do place an upper bound on 
the deleterious effect of the 3D effects. Beam scalloping 
is seen, but there is no discernable beam loss. 
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Figure 4: The rms envelopes are computed in a 10.7 mm x 
7 mm rectangular beam tunnel using the PFB2D code 
with a paraxial magnetic field (dashed lines) and the 3D 
OMNITRAK code with a realistic field map from Ref [5] 
(solid lines). The elliptical envelope semi-major radius 
a(s) (thick lines), and semi-minor radius b(s) (thin lines) 
are as a function of the propagation distance s. 

 
Figure 5: The fluid trajectories for the realistic field map 
case are computed using the 3D OMNITRAK code and 
shown over a 10 period focusing lattice. The twisted 
structure of the beam is evident. 

 
When we reduce the beam tunnel size to 10.7 mm x 7 

mm, we expect the image-charge effects to increase. The 
results of this modification are shown in Figure 4 where 
the dashed lines indicate the PFB2D results. Note that the 
greatest change (as compared to the larger tunnel of 

Figure 3) is the additional scalloping seen in the beam 
minor radius. Nonetheless, confinement is maintained. 

The solid lines in Figure 4 indicate the OMNITRAK 
results for the smaller beam tunnel. Unlike all the 
previous results, however, the beam in this simulation is 
not focused using a paraxial representation of the 
magnetic field, but rather by a realistic imported magnetic 
field map computed using the OPERA3D model of Ref. 
[5]. Thus we see that this elliptic beam can be focused 
using the non-axisymmetric ppm scheme with a 
physically achievable magnetic field while self-
consistently incorporating 3D space-charge effects. Figure 
5 shows the fluid trajectories in this simulation where the 
twisted beam structure is evident. 

CONCLUSION 
The validity of the non-axisymmetric periodic 

permanent magnet focusing theory of Ref [1] is 
established through 2D simulations using the PFB2D code 
as well as 3D simulation using the commercial trajectory 
code OMNITRAK. The beam is found to be well-
confined in all cases considered, and its qualitative 
behavior is as predicted by the theory. The average 
envelope radii are also close to theoretical predictions, 
however larger envelope oscillations are seen with the 3D 
simulations than the 2D simulations. Future higher 
resolution 3D studies may establish that this is an artifact 
of finite resolution in the electric field calculations. 
Significant image charge effects are not seen in the cases 
considered. 
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