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Abstract 
This work presents and describes in detail the pressure 

profile in a conical tube with the unavoidable steady-state 
outgassing, plus a transient gas source, like, for instance, 
in an accelerator, when particles from the beam hit the 
walls. Mathematical and physical formulations are given 
and detailed; specific conductance, specific throughput 
and a detailed discussion about the boundary conditions 
are presented. These concepts and approach are applied to 
usual realistic cases, such as conical tubes, with typical 
laboratory dimensions. 

INTRODUCTION 
Several areas of applied physics deal with problems in 

high-vacuum and ultra high-vacuum technology that 
present tubular form. In many cases one finds conical 
tubes, which are frequently present in particle 
accelerators, colliders, storage rings, gravitational 
antennas, and some electron devices. Those systems 
frequently use parts that present tubular geometry with 
variable cross section along the tube axis. In particular, 
we deal with the special and important case when beam 
particles or beam radiation strike the walls. This case can 
be considered as a gas source localised in position and in 
time. The mathematical tools available to deal with this 
kind of geometry (variable cross section) are restricted to 
an approach that considers the vacuum system as 
composed by discrete parts, vacuum chamber, line 
pumping and vacuum pumps. This approach simplifies 
the treatment, but at the price of giving only, in some 
cases, average values for the pressure of the system. In 
tubular high-vacuum systems, the pressure along the axis 
of the tube may vary by orders of magnitude [1]. In this 
work we present a treatment, which solves analytically 
the steady-state differential equation for the case of 
azimuthal symmetry with variable cross section along the 
axis (considering the gas source due to natural 
outgassing); plus a numerical solution for the case of a 
transient gas source.  

This work deals with a very common case in vacuum 
technology, the conic tube. From the overall dimensions 
and material employed, we define the specific 
conductance and the degassing rate per unit length of the 
tube. With these we are able to derive the pressure field, 
as well as the throughput, along the length of the tube   
[2-3]. We assume that high-vacuum pumps with equal 
pumping speeds are pumping both extremes of the tube. 
We analyze the steady-state and the transient modes. The 

differential equation is suited to deal with any transient 
case, if a time-dependent gas source is given. Another 
example is the situation where part of the vacuum system 
is vented, and then evacuated again [3].  

In this work we determine the steady-state pressure 
field in a conic tube with a constant degassing rate per 
unit area and a gas source impulsive in time and in 
position. 

PHYSICAL AND MATHEMATICAL 
MODELING  

The adopted model assumes azimuthal symmetry, so 
that the tube surface can be defined as the revolution of a 
line around the axis of the tube. Other relevant quantities 
can be defined as well. The specific conductance at each 
point along the x-axis of the tube is defined as [1,3,4]: 
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where the function f(x) represents the line that, by 
revolution around the x-axis, defines the surface of the 
tube. For the gas N2 at the temperature 293 K the 
expression bellow will be expression (1): 
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The unit of c(x) is l.s-1.cm. With expression (1) one can 
calculate the conductance of any cross section of a given 
tube. Analogously we can define the specific degassing 
rate per unit length, which is also a function of x, and can 
be defined as: 
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where q0 is the degassing rate per unit area of the 
material. The unit of q(x) is mbar.l.s-1.cm-1 [1]. The model 
assumes the molecular flow regimen, and the diffusion 
equation will be [1-3]: 
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The gas source can be represented by the following 

function: 
 
                             ),(),( txqqtxq TS += ,                (4) 
 
where qS represents the outgassing, and qT the transient. In 
this case we can represent the total degassing rate with the 
following function: 

 
          )()('),( ttxxqqtxq S ′−′−+= δδ               (5) 

 
where q’ represents the amount of gas (in mbar.liters), and 
δ(x) is Dirac’s delta function liberated at x = x’ in t = t’.  

Since the differential equation is linear, the general 
solution will be the sum of the particular solutions for the 
impulsive sources, and may be written as: 

 
                  ),()(),( txpxptxp TSG +=                  (6) 
 

where pS represents the outgassing, and pT the transient. 
Equation (3) yields the following exact solution to the 

steady-state case [3-4]: 
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The values of the constants are the following: 

 

( ) ( ) .1π2    , 1π2

      ,
2

     ,
2

2
1

2
0

2
1

2
0 baqBaaqA

db
L

dDa

+=+=

=
−

=
 

 
To solve this kind of equation (a ≠ 0) one needs to 

define the boundary conditions to find the constants C1 
and C2. In general, this is done specifying the pressure 
(Dirichlet’s boundary condition) and the throughput 
(Neumann’s boundary condition) at a particular point of 
the tube or two values of one of these quantities. To solve 
the more interesting cases in high-vacuum systems, the 
boundary conditions are a mixing (linear combination) of 
the value of pressure and the throughput (Robin’s 
boundary condition) in particular point, in general in the 
place of vacuum pumps; this kind of boundary condition 
is very powerful. The discussion of the boundary 
conditions will be presented in section 3, with a detailed 
description of the geometry of the system. 

DEFINITION OF THE GEOMETRY  
We are dealing with an axis symmetric (azimuthal 

symmetry) tube with variable cross-section and we treat a 
conic tube as an example. The specific conductance 
changes along the axis, as well as the specific degassing 
rate per unit length. The gas source is considered to be 
due to the natural degassing of the materials of the 
structure, which we consider to be made of stainless steel. 
In this case the degassing rate per unit area is qS = 10-9 
mbar.l.s-1.cm-2. This is a typical value for this material, 
considering common cleaning processes in high-vacuum 
technology. A schematic drawing of the conic tube is 
presented in Fig. 1. 

 

 
Figure 1: Schematic drawing of the system: T – conic 

tube; V – valve; and HVP – high-vacuum pump.  

 
The function defining the line that, by revolution 

around the x-axis, defines the conic tube, is: 
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where L is the length; d the smaller diameter; and D the 
larger diameter of the tube. The examples that will be 
given adopt L = 400 cm, d = 3 cm, and D = 6 cm. The 
total steady-state throughput generated by the walls of the 
tube is QT = 5.66 x 10-6 mbar.l.s-1. We can write the 
throughput at the extremities of the tube as: 
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where SL and SR are the pumping speeds at the left and 
right ends of the tube, respectively. In our example, we 
consider that SL = SR = 50 l.s-1.  This calculation is useful 
to check the consistency of the results for the pressure 
field along the axis of the tube, since the sum of the 
throughputs at the ends should give the total throughput.  

The following boundary conditions are assumed [4]: 
 

• all the gas reaching the pumps is pumped, both for the 
transient and the steady state solutions, so that at x  = 0  
(Robin’s Boundary Condition), 
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   and at x = L  (Robin’s Boundary Condition), 
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• the initial condition is 
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RESULTS AND DISCUSSION 
The solution was obtained using both analytical and 

numerical procedures. The numerical solution, to solve 
the transient gas source, was obtained using a standard       
Galerkin finite element method for the spatial 
discretization and an implicit Euler scheme for the 
temporal discretization.  

Once the characteristics of the system are specified and 
the boundary conditions adopted, we can solve equation 
(3) and find the steady-state and transient-state pressure 
fields along the tube. Figure 2 shows the total pressure 
field distribution along the x-axis. 

 

 
Figure 2: Pressure field along the axis of the conic tube: at 
t = 10-4 s (thick solid line); t = 10-3 s (dotted line); t = 10-2 
s (dashed line); t = 2x10-2 s (two-dot-dashed line); t = 10-1 

s (thin solid line); t = 100 s (long-dashed line); t = 101 s 
(dot-dashed line).  

Several effects contribute to produce an asymmetric 
pressure field distribution as shown in Fig. 2. The first is 
that the specific conductance changes along the tube. In 
addition one must also consider the change in throughput 
from the walls caused by the change in diameter of the 
tube. The steady-state results presented here were 
confirmed by a Monte Carlo calculation [6]. 

We can see the pressure profile along the axis of the 
tube at seven different times. At t = 10-4 s one can see the 
gas from the transient source (q’ = 10-6 mbar.liters, x’ = 
200 cm and t’ = 0 s) distributed in roughly ±15 cm around 
x = 200 cm. At t = 10-3 s the pressure peak is lower, and 
distributed in a wider region. As time evolves, one can see 
the gas burst filling the whole tube and reaching the 
pumps. After about 10 s, the pressure is practically back 
at the steady-state level. One can see that the pressure 
varies more steeply (higher gradient in absolute value) at 
the left hand side of the tube, next to the end, since the 
specific conductance is lowest in this region. The point of 
maximum pressure for the steady-state condition occurs at 
x = 151.6 cm.  

This kind of analysis can be very useful in the design of 
vacuum systems, in order to optimize the number of 
pumps along the vacuum line.  
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