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Abstract 
The code MBIM1 for the calculation of the coherent 

oscillations stability for multibunch beams in storage 
rings is presented. The multibunch beams with arbitrary 
charges of bunches are considered, including 
counterrotating beams (in approach of short bunches in 
comparison with minimal wavelength of considered 
environment RF spectrum), with the account of beams 
coupling with the environment (i.e. RF cavities or/and 
smooth vacuum chamber with walls of finite 
conductivity). The code uses the approach of small shifts 
of coherent frequencies, when different multipole types of 
synchrotron oscillations can be treated as independent 
from each other.  

INTRODUCTION 
One of the ways to analyze the stability of coherent 

oscillations is the frequency domain solution, with 
formulation of the selfconsistent equation system for the 
whole beam as the eigenvalue problem and with defining 
the stability of the motion by its eigenvalues. Most 
authors using this method deal only with symmetric 
beams and use for unsymmetric an upper estimation of its 
growth rates via the maximal growth rate of the 
symmetric beam for which this unsymmetric beam could 
be a constituent [1]. But the current of such symmetric 
beam is higher than that of the considered unsymmetric 
beam, therefore, this approximation can exceed 
significantly actual growth rates of the unsymmetric beam 
and actual requirements to the feedback system. 

In this paper we present the formulation of the 
eigenvalue problem for arbitrary multibunch beams, 
(possibly with different charges, including the case of the 
counterrotating beams), in the approach of short bunches 
for which the order of the eigenvalue problem is equal to 
the number of bunches. The Landau damping is taken into 
account. 

We follow here the method developed in [2] for 
symmetric beams using a continuum model, with the 
same restrictions: the sinusoidal oscillations in the 
absence of excitation are small; the perturbations of the 
distribution functions due to the interaction are small (as 
compared to the undisturbed distribution); the interaction 
only with the cavity modes with the wavelength greater 
than the bunch length is considered; the dependence of 
the synchrotron or/and betatron frequency on the 
amplitude is taken into account in the first approach of 
small amplitudes; the unperturbed distribution functions 
of all bunches are supposed to be identical (gaussian) (in 
particular, all bunches have the same length), but their 

currents can be different; smooth focusing with the same 
betatron tune xν  is considered. 

The details of all derivations are given in [3] and [4]. 

THE SYSTEM OF INTEGRAL 
EQUATIONS 

Starting from the linearized Vlasov equation (in terms 
of action J and phase ψ ) for the perturbations of 
distribution functions of all bunches and assuming that all 
multipole modes of synchrotron oscillations could be 
considered separately, for the multibunch beam, one can 
write the system of integral equations (the RHS is equal 
to zero for the eigenvalue problem):  

,1,...,=

0,=),(),,(),(
1=

b

''j
n

'lj
nn

bN

j

l
n

Nl

dJsJFsJJKsJF ∫∑−
 

where ),( sJF l
n  is the n -th multipole harmohic of 

synchrotron oscillations for the perturbation distribution 
of the l -th bunch; in the case of the transverse 
oscillations denotation J  defines a combination of two 
variables, xJ  and zJ , for which zxdJdJdJ ∫∫ = . 

The kernel of the system for the multipole synchrotron 
oscillations is  
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where )(0 Jf l  is the undisturbed distribution function of 
the l -th bunch, independent from time and phase, which 
is supposed to be the same (gaussian) for all bunches: 
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; Rb /2=0 σφ , R  is the 

radius of the storage ring, bσ  is the r.m.s. bunch length 
(the same for all bunches); )( 0ωimsZ −  is the total 
impedance of the cavity reduced to the narrow gap; 0ω  is 
the revolution frequency; jI  is the average current of the 
j -th bunch; )(JΩ  in the frequency of synchrotron 

oscillations (at zero current). 
For the transverse oscillations (taking into account their 

possible dependence on the n-th harmonic pf synchrotron 
oscillations),  
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where zx pp ∂∂ /)/(= 0 νακ  describes the dependence of 
the betatron tune on the longitudinal momentum via 
momentum compaction factor α , 0p  being the whole 
longitudinal momentum; sE  is the energy of the 
synchronous particle. 

In the approach of short bunches, using the first 
approximation for Bessel functions of small arguments, 
the system of integral equations can be reduced to the 
system of linear algebraic equations:  
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where X
r

 is the vector of complex amplitudes of 
perturbation functions of all bunches, iijij IN δ=ˆ  is the 
diagonal matrix describing the charges of all bunches, the 
matrix Ẑ  describes the interaction of the bunches with 
environment and thereby with each other, the function 

)(sg  is a dispersion function describing relation 
)(= jj sgλ  between the system eigen values jλ  and 

eigen frequencies of coherent modes jj is=Ω , where 

real parts of js  determine the stability. 
For multipole synchrotron oscillations (with 0>n ), in 

view of the amplitude dependence of the synchrotron 
frequency )/(1=)( 00 zzzzzz JJJ ξ−ΩΩ   
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where rfq , rfV  and sφ  are the RF harmonic number, the 

RF voltage amplitude and the synchronous phase, jθ  are 
the angular positions of the bunches. 

For large complex coherent shifts 
00 |>>|=|| ΩΩ+∆ ξinss jj  one can neglect the amplitude 

dependence of the synchrotron frequency and get 
jjs λ=∆ . At small 0|)(| Ω≤ξsg  the eq.(2) could have no 

solution, i.e. no coherent motion at all. The solutions for 
0<n  are complex conjugate to those for 0>n . 

For the transverse oscillations, in view of the influence 
of different multipole modes of synchrotron oscillation 

and taking into account the amplitude dependence of 
synchrotron and betatron frequencies, we have 
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( ) zxJJJ ,,/1=)( 00 =−ΩΩ αξ αααααα . 
These equations are written for solutions near 

00= zxx inins Ω+Ω , for 1=xn  and any integer zn . The 
solutions for ),( zx nn −−  are complex conjugate to those 
for ),( zx nn . 

The dispersion function (4) for the transverse 
oscillations is a somewhat more complicate two-
dimensional analog of this function for longitudinal 
oscillations (2). The main difference consists in 
dependence on two parameters, 0zzn Ωξ  and 0xxΩξ . 

COUNTERROTATING BEAMS 
Dealing with counterrotating electron and positron 

beams, which interact with an RF cavity placed at the 
angular distance cθ  from the point of meeting of 
bunches, we will replace (for convenience of derivations) 
the positron bunches with equivalent electron bunches 
whith the same currents, rotating in opposite direction and 
passing the cavity at the same moments as the original 
positron bunches. If the angular distances between 
neighbour bunches (including, if necessary, bunches with 
the zero charge) is equal to bNR/2π , then we can write 
the angular position of all bunches as 

b
b

j Njj
N

1,...,=1)(2= −
πθ  - for bunches of the 

original electron beam, 

bbcb
b

j NNjNj
N

,...,21=21)(2= ++−− θπθ  -  for 

bunches of the additional electron beam, equivalent to the 
original positron beam. 

In view of this difference, one can denote  
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where ppeeZ ,
ˆ  describe the interaction between the 

bunches of the same beam and peepZ ,
ˆ  describe the 

interaction between the bunches of the counterrotating 
beams. Therefore, in (1) and (3) one should take 

)(2= ji
Nb

ji −−
πθθ  for ppeeZ ,

ˆ  and 

c
b

ji ji
N

θπθθ 2)(2= m−−  for peepZ ,
ˆ . 
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Note, that if the RF system consists of cavN  cavities, 

then the elements of Ẑ  should be summed up for all the 
cavities with their angular distances from the point of 

meeting: )(ˆ=ˆ
1= cc

cavN

c
ZZ θ∑ . 

One should mark that at the interaction of the 
counterrotating beams with the resistive wall impedance 
of the longitudinally homoheneous vacuum chamber, the 
fields induced by each beam have only harmonics 
propagating in the same direction as the beam itself and 
have no reflected waves which could interact with 
counterrotating beam. As a consequence, in this case the 
elements of peepZ ,

ˆ  are equal to zero. 

THE CODE MBIM1 
The method given above is realized in the computer 

code MBIM1 (MultiBeam Instability, Multipole 
oscillations, version 1 for short bunches). The code solves 
a problem of longitudinal (or transverse) coherent 
oscillations of arbitrary multibunch beams in approach of 
short bunches and small coherent frequency shifts, in 
view of Landau damping. 

The interaction with cavities of RF system and with a 
resistive wall impedance of the longitudinally-
homogeneous vacuum chamber (for transverse 
oscillations) is taken into account, in the terms of the 
cavities impedance described as a table with resonant 
parameters of all modes of all cavities or as a given 
(tabulated) frequency dependence. For resonant modes of 
RF cavities spectrum, the method of analytical summation 
of the serieses over azimuthal harmonics given in [5] is 
applied. If the counterrotating beams are considered, one 
should define the angular position of cavities with respect 
to one of the points of meeting of bunches. 

In the used approach of short bunches, the order of the 
problem (that is the order of the considered equation 
system) is equal to the number of bunches with a nonzero 
charge. 

AN EXAMPLE 
Considering only one resonant mode of the RF cavity 
(with resonant frequency rω ), let us demonstrate 
dependence of the maximal growth rate of the multibunch 
beam with a gap on the gap width and quality factor. We 
consider 01,...,= bb NN  bunches  ( 30=0bN ) following 
with distances between them 0/2 bNRπ ; the gap length is 

00 1)/(2 bbb NNNR +−π . Fig.1 shows the field map of 
equal maximal growth rates (in logarithmic scale) at the 
plane of variables bN  and )(Qlog . The results are given 
for the same current of one bunch constI =1  (above) and 
for the same current of the whole beam constNI b =1  
(below). This example shows that the upper estimation of 
the growth rates with that of symmetric beam given in [1], 
though valid for constI =1 , cannot predict the change of 

growth rates for the beam with a gap with the constant 
whole current of the beam. 

 
Figure 1: The field map of equal maximal growth rates (in 
logarithmic scale) in dependence on the number of 
bunches bN  and )(Qlog  for the same current of one 
bunch constI =1  (above) and for the same current of the 
whole beam constNI b =1  (below). 
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