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Abstract

In accelerators, it is common that the motion of the hor-
izontal x-plane is coupled to that of the vertical y-plane.
Such coupling will induce tune shifts and can cause insta-
bilities. The damping and diffusion rates are also affected,
which in turn will lead to a change in the equilibrium in-
variants. With the perturbative approach which is also used
for synchrobetatron coupling [B. Nash, J. Wu, and A. Chao,
work in progress], we study the z-y coupled casein this pa-
per. Starting from the one-turn map, we give explicit for-
mulae for the tune shifts, damping and diffusion rates, and
the equilibrium invariants. We focus on the caseswhere the
system is near the integer or half integer, and sum or dif-
ference resonances where small coupling can cause alarge
change in the beam distribution.

Introduction

It is of general interest to obtain equilibrium invariants
for a coupled system. In this paper, we will find the equi-
librium value of the eigen-invariants for a linear -y cou-
pled system. Particularly, we study their behavior near res-
onances, i.e., integer / half-integer, and sum / difference
resonances. In general, for a3-D system not exactly on res-
onance, there are three eigen-invariants g; » 3. Assuming
no coupling between the longitudinal and the transverse di-
mensions, we can consider a2-D system with thetwo trans-
verse dimensions (even though the diffusion matrix has to
be deduced from 3-D dynamics), and we will work in the
betatron coordinates. It can be shown that g; = Z7G;Z/2
are eigen-invariants with the matrix G; = JUG,UTJ,
and Z = [xp,27,ys,yj]". We describe the dynamics
by a one-turn map, M. The eigenvector matrix U is de-
fined by MU = U\, with X being the diagonal eigenvalue
matrix.! Assuming the damping and diffusion are slow
processes, and the particle motion still follows the eigen-
invariants. The change in the invariant per turn is given
by Afgi) = ¢ ds(—tr(Ai(s)){g:) + tr(Gi(s)D(s)) =
— $ b;(s)(gi) + ¢ di(s), which determines the equilibrium
of (giYeq = $di(s)/ ¢ bi(s). Here, D(s) isthe loca dif-
fusion matrix, and A(s) = U~ 1b(s)U with b(s) the local
damping matrix, A; the up-left 2 x 2 matrix and A, the
low-right 2 x 2 matrix of A. So technicaly, the problem
reduces to finding the U-matrix. Thisis accomplished via
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the 2nd-order degenerate perturbation theory.

Second-order degenerate perturbation theory

The uncoupled motion in the z and y dimension is

described by the one-turn map ( MO“”° MO > where
y0
My and M, are symplectic 2 x 2 matrices. In
the integer ( half-integer ) resonance case, My,o = [
(—=I). Following Courant-Synder [1], we can write
Moo = cospgyl + sinpeyJsy With Jpy =
( Uy Py >.Thecorresponding eigenvectors are
—Vz,y TQzxy

vip = [(1 — i)/, iv/Vas 0,017 /v/2 for the positive

mode, i.e, its eigenvalue A1y = e'*=. The negative mode

A_10 = e M= hasv_1g = iv},. Samefor the y dimension.
We solve the eigenequation

MUk = /\kvk, (1)

with M = My + M; + Ms. The four eigenvectors vy
(k = 1,-1,2, and —2) of M, set up the complete and
orthonormal basis, with Myvyy = Agovro. The conju-
gate vector is defined as v* = —isgn(k)v],J, so that
v = ;5. We will treat M; and M, as the 1st- and
2nd-order perturbation. The eigenvalues are expanded as
Ae = Ako + Akl + A2 + O (63). Assuming that there is
degeneracy among vectors with indices € Zg4,, the eigen-
vectors are expanded in the following way

[1+cfy+ O (€8)] vo
+ 2tk {%1 +ept+0 (63)} vj0
for k¢ Zgg 5
Zjezdg {Cljco +ey+0 (63)} vj0 @)

+2j¢2dg {Cil +cy+0 (63” vj0
for ke Zy,.

Vi =

Now, the eigenequation (1) is solved order by order. Re-
sults are given below omitting derivations.

Nondegenerate part (i.e, for k ¢ Z,,) For the 1st-
order, we have A1 = Myy; and for I # k, b, =
Mk /(Ao — Nio) with M = UZOMlvko. For the 2nd-
order, wehave A\yo = >- ., g Muj+Ma g, and for | #
k, o = (Mt — 2z GaMij — Maik) /(Mo — Ako)
with M2,lk = UloMgvko.

5 0 B i 0 Degenerate part (i.e, for k € Z,,) For the 1st-order,
Lvarious matrices are J = ( 02 T ) G = < o 0 ) forl € Z4,, we have
~ 0 0 0 1)\ _ 0 1 .
G2:< 0 ity )’JQ:( -1 0 )"’I:( 10 )'S”per Z Mijcho = Me1Chos 3
script T is taking transpose, tr takes the trace. JE€Zag
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which is the eigenequation for both \;; and cﬁco; and for

L ¢ Zag, iy = (Zjezd CIJGOMIJ)/(/\]CO — o). For the
2nd-order, for I € Z;,4, we have

> i¢zq, G Mij + ez, oMz

Cko
and for [ ¢ Zg, 022 = ()\klcil - Zjezdg cilMlj -

> ez, cloMa.1;) /(Mo — ko). Notice that the vy, in Eq.
(2) are not normalized yet.

Resonances

In the integer / half-integer resonance case, the degener-
acy comes in one subspace, say, in y, so that Ayp = A_qg,
and Zy, = (2,—2). For integer, then Ayg = A_g9 — 1,
for haf-integer — —1. For sum resonance, i.e., u, +
Wy = 2nm, Zgg = (1,—2). For difference resonance, i.e,
le — Wy = 2nm, Zgg = (1,2). Hence, caculations for
all casesinvolve eigenanalyzing 2 x 2 coupling coefficient

a b

matrices, which we designate as ( e d ). Its eigenvalues

ae )\, = i[(a+d) + \/(a — d)? + 4bc] and eigenvectors
aevy = (5[(a—d) +/(a—d)?>+ 4bd, 1)T.
Sum resonance According to Eq. 3,
(o win ) (oe) = ()
Moy M_s s o 11 01—02 )
B0 )
M 21 M_o o 30 ) TN\ el )7

Explicitly, we have a = My = i\ My, d =
M_9 5 = —’L'/\2*0|_M22—|,b = Mi_5 = (5/2)6i¢, and
c = M_y = (£/2)e’?#=9) Here, we introduce the oper-
ator | |, which only meansthat | z] isreal, but not guaran-
teethat ] > 0. Noticethat \jg = A_20 = €. Wedefine
Mg — M_o_9 = Z'ei“(l_./\/ln] + |_M22‘|) = iei“Au.

We then define tanhf = &/|Ap|. The eigenvec-
tors depend on the sign of Au. For Ap > 0,
( cto ) B ( ie’(9=1) cosh (0/2)
-2 - : )
10 sinh (6/2) i
ct o sinh (6/2) No

3 T\ —ie @1 cosh (6/2)

tice that in this formalism, the system is unstable for

the z-y coupled case? Now the U-matrix is con-

structed as U = (vg,iv, v2[= w*y],v_2), with
vy = ie®=#) cosh (0/2) vio + sinh (6/2) v_og

{ U_o = sinh (9/2) V10 — 7;671.(4)7“) cosh (0/2) V_20 )
In p-coordinates, the damping and diffusion

0O 0 0 O
matrices read b = 8 28’3 8 8 , and
0 0 0 2
c _( —ie®=1) sinh (6/2)
2For A 0 h ( cll(% ) - ( cosh (6/2)
or Ap < 0,wehave cosh (6/2)

—i(¢=#) sinh (6/2)

1
c_%o _ (
c 5 ie
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e MeNe Nty Nl
My e My e, ,
D = 4| "= Ty Tty Using
Nelly MMy Myl My
A = U~'bU, the damping coefficients are given as
by = 2b, cosh? (0/2) — 2b, sinh? (6/2) and
by = —2b, sinh? (0/2) 4 2b, cosh? (§/2) .

diffusion coefficients 3

di = dHycosh® (0/2) + dH, sinh* (0/2)
dsinh ,
- \/77,5) [(GGy — mimy,) cos(p — ¢)
z'ly
+ (Gamy + Gyy) sin(u — ¢)] ®)
dy = dH,sinh® (0/2) + dH, cosh® (0/2)
dsinh
\/’W() [(gwgu 77;;777;) cos(p — @)

+ (Gamy + Gyy) sin(u — ¢)] (6)
with Hmy Yz ynxy+2az yMe, y%y+ﬁz ynr y’gfy =
(07 ynz y + Va,yNz,y> and Yz yH 7775, + g

The equmbrlum value is (g;)eq fd /fb ), for
i =1,2.
Difference resonance According to Eq. 3
Mir Mo clo —\ Cig
Mo Mas o U\ )
M Mo o ) _ 30
Mar Moo 30 N
Explicitly, we have a = MH = iAo Mi1],
d = M22 == i)\go I_Mgﬂ b = M12 = (5/2)6“’,
and ¢ = My = —(£/2)e?=9 . Notice
that \ig = A9 = e, Let us now define

Mll — M22 = iei“(LMll] — |_M22-|) = iei“Au.
We then define tanf = £/|Au|. Again, the eigenvec-
tors depend on the sign of Au. For Ap > 0, they are

(&)= ™).
()=(

sin (6/2)
—ie~ 91 cos (6/2)
the system is found to be stable for the 2-y coupled case.*
Now the U-matrix isconstructed asU = (v1, iv;", v, ivy),
with { 1 = —ie'®H) cos (0/2) v1o + sin (6/2) vao
vy = sin (0/2) vio — ie= @1 cos (0/2) vag

> Notice that

The damping coefficients are computed to be
by = 2b, cos? (0/2) + 2b, sin’ (0/2), .
{ by — 2b, sin” (6/2) + 2b, cos? (/2). A9 diffu

sion coefficients are
dy = dH,cos?(0/2) + dH, sin? (0/2)

Notice that for n,, = 0, di = dHgycosh?(0/2) +
dHysinh?(0/2) — dy\/HzHycos(u — ¢)sinh(f), and dp =

dH, sinh?(0/2)+dH, cosh2(e/2) dy/HzH,y cos(pu— ¢) sinh(6).
( “lo ):( —iei(®=H) sin (0/2) )
4For Ap < 0, they are ‘10 cos (6/2)

( —ie*ifgig/jx)l (6/2) >

(&)
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dsin(0 Do
- \/S%(%) [(GoGy + nlym),) sin(u — ¢)
+  (Gamly — Gynl) cos(p — @)] @)
dy = dH,sin?(0/2) + dH, cos® (6/2)
d Py
\W(V) (GG, + i) sin(u — )
+ (gxny - gy”z) cos(p — ¢)] . 8

Integer / half-integer resonance The physics of the
sum / difference resonance is analyzed within the 1st-order
degenerate perturbation as above. However, the integer /
half-integer resonance is more involved. The physics of
this resonance needs to be analyzed in a 2nd-order pertur-
bation calculation. As we find, the perturbation matrices
( g jg ), and My = ( 13 19) ). Equation (3)
yields A1 = 0for k € Zy,, soit is determined by Eq. (4),
which is 2nd-order, i.e.,

aelM; =

128a = iAp, and b = ¢*
& > 0, however, Ap can be either negative or posi-
tive. We then define tanh(0)
vectors depend on the sign of Aup.®> For Ay > 0, they

) _ ( ie'% cosh (6/2)

)=

with {

and ¢ = b*.

sinh (6/2)
sinh (6/2)

SFor Ap < 0,

(£/2)e™.

—ie~ cosh (0/2)
plectic U- matrix isthen defined as U = {v1, 107, v2, 9057},

= ie'? cosh (0/2) vao + sinh (6/2) v_a0
v_o = sinh (6/2) vog — ie ™" cosh (0/2) v_o0

(2)=(

2
c_%o _ (
c 5 ie

= &/Apul.

—ie!® sinh (6/2)
cosh (6/2)
cosh (0/2) )
~sinh (0/2) )

).

M12M21 M1—2M21
0— A1 A20—A10
-A/lz 12Ma_1 —1-2Ma_1
A20—A_10 A20—A_10
+Ms 20 +M27272 5
MiaM_2 Mi_a2M_2 Ca0
>\2ng 0 >\207)\1
—12M_2_1 —1-2M_2_1
)\20—)\,10 >\2U—)\—10
+Ma 99 + Mgy 9o
2
-\ ( €20 )
— N\22 —2 )
C20
Mia Moy Mi_a Moy
A 20— )\10 )\—207>\10
+ M_12Ma_y M_1 oMoy
A 20— A 10 )\—20*>\—10
+Ma 20 + Mo o 2
€20
072
MiaM_21 My oM _o; —20
)\720—)\10 )\—20_>\10
M_12M_2_1 M_1_2M_31
A_20—A_10 A_20—A_10
+Ma 99 + My 9o
2
-\ €20
— N=-22 —2 .
C_20
Notice that d = a* We define a — d =

Notice that

The eigen-

) Thesim-
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The damping coefficients are computed to be
b1 = tr, (A) = All + A22 ~ 2[)3; —
{ by = tr, (A) = Asy + Agy ~ 2b, Similarly the

diffusion coefficients are d; = dH,; and for Ay > 0,°
dy = dHycosh(0) + (d/vy)[cos(¢)(n} — Gy) +
2sin(@)n, G, ] sinh(0).

— 5[ _
= 4 x
5 3 a
— 5 <
~

= 1 8
2 10 .
5 -1 &

0 1 2 3

Figure 1: Damping / diffusion rate for the sum resonance.

Discussion

For integer / half-integer resonance, the coupling does
not affect the damping. However, the diffusion rate may
increase substantially, i.e., Ay — £ implies6 > 1. Inthe
sum resonance case, the instability comes from two effects.
In addition to a coupling stopband, the damping rate may
become negative (antidamping) while the diffusion rate be-
comesvery large. Inthe difference resonance case, both the
damping rate and the diffusion rate stay finite. Let us study
the sum resonance, and show some propertiesin Fig. 1. We
plot the simplified expression with 7;, = n; = 0 asin Foot-
note 3. Thinking of aflat beam, we assume H,, = H,,/100,
also an exaggerated b, = b, /2, with parameters ¢ = 7/2
and = 0.3. The red solid curve isfor d; (6), the purple
long-dashed for d5 (), the blue dashed for b, (6), and green
dotted for b2(9). It isclearly seen that due to coupling (6),
the diffusion rate in y direction increases very rapidly. In-
terestingly, the y damping rate becomes negative, indicat-
ing an antidamping type of instability. Of course, this does
not happen for b, = b,.

In conclusion, we studied the equilibrium value of the
eigen-invariants near the integer / half-integer resonance,
and the sum / difference resonance. The similar topic of
synchro-betatron coupling is studied elsewhere [2], where
more details can be found.
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8For A < 0, we have do = dHy cosh@ — (d/vy)[cos ¢(n;/2 -
gg) + 2sin ¢my Gy] sinh 6. Notice that the difference comes from the
sign of Ap. This can be absorbed into the definition of 6.
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