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Abstract

Based on precision beam orbit measurements, Model In-
dependent Analysis has been used successfully to build a
computer model that matches the linear optics of the real
accelerator. We report a parametric extension of model in-
dependent analysis that will allow efficient modelling of the
beam optics in the presence of beam energy dispersions.
A simulation study is presented where the nonlinear de-
pendency of lattice parameters on beam energy is captured
by constrained training of a universal nonlinear approxi-
mator. Simulation results are presented that demonstrate
the improved accuracy of beamline model verification and
diagnosis with parametric model independent analysis. Im-
proved optics models are expected to positively impact
model-based beam operation and control.

INTRODUCTION

The accuracy of the constructed accelerator beamlines
(compared to the designed lattice) directly determines ac-
celerator performance. Therefore, the algorithms to verify
and diagnose accelerator optics have long been of inter-
est to accelerator physicists. Model-independent analysis
is an analysis technique that employs statistical methods to
verify the beamline model given turn-by-turn Beam Posi-
tion Monitor (BPM) measurements [1, 2]. SLAC scientists
have been able to use model-independent analysis to iden-
tify quadrupole strengths and sextupole feed-downs in the
lattice model, as well as BPM gains and BPM cross-plane
couplings, such that phase advance and coupling ellipses
among BPMs calculated from the constructed lattice model
match those derived from orbit measurements [3]. The lat-
tice model so fitted to orbit measurements acts as a virtual
accelerator that matches the real accelerator in linear op-
tics, and hence may be used to identify new settings that
could improve the performance of the real accelerator 1.

Model-independent analysis, however, is a linear analy-
sis technique. While attempts to extend the analysis to ver-
ify nonlinear properties of the lattice have been of interest,
the reported research on this topic has been scarce [2].

For this study, we used Parametric Universal Nonlinear
Dynamics Approximator (PUNDA) models [4], as a frame-
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1An interesting example is reported in [3] where model-independent

analysis helped PEP-II to achieve a peak luminosity above 6.5 ×
10

33
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s
−1

for the first time by bringing the Low Energy Ring (LER)
working tune to near half integer and simultaneously fixing the beta beat,
which would have been difficult otherwise, due to LER coupling effect.

work for building accurate and computationally efficient
models for beamline optics (see Figure 2). The PUNDA
model in this case is formed by a series connection of a
Neural Networks (NN) model block and a Parametric Non-
linear Model (PNM) block. The NN model captures the
functional dependency of beam invariants, Q 12 and Q34

described by Eqs. (3) and (4), on beam operating condi-
tions, given available BPM measurements. The PNM block
embodies the Non-Linear Programming (NLP) problem
for model independent analysis, described in the next sec-
tion, and as such its outputs (i.e. normal and skew quad
errors, and BPM gains and cross-plane couplings in our
simulations) are implicit (i.e. not directly measured). The
NN model is fully determined by the NN weights and bi-
ases. Constrained optimization is used to determine the NN
weights and biases in this series structure.

NLP PROBLEM FOR MODEL
INDEPENDENT ANALYSIS

In this section, we simply state the constrained NLP
problem that lies at the heart of model independent anal-
ysis to emphasize the fact that unknown lattice parameters
are estimated by an explicit nonlinear optimization2:
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s.t : Physically meaningful constraints.

where:

a. xa
i /ya

i , i = 1, 2, 3, 4 are x and y measurements for 4
independent linear orbits at “BPM-a”,

b. xb
i/yb

i , i = 1, 2, 3, 4 are x and y measurements for 4
independent linear orbits at “BPM-b”,

c. Rba
12, R

ba
14, R

ba
32, and Rba

34 are the elements of the sym-
plectic transfer matrix between the two “BPM-a” and
“BPM-b”,

2An outline for the derivation of this NLP problem is presented in
Appendix A. A more detailed derivation may be found in [5] and the ref-
erences therein.
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d. {Ω} includes the decision variables of the optimiza-
tion problem:

i. The gains, ga
x/ga

y , gb
x/gb

y, and cross-plane cou-
plings, θa

xy/θa
yx, θb

xy/θb
yx for the two BPMs,

ii. Normal and skew quad errors, qn/qs, for any
quadrupole magnet between the two BPMs that
is not fully known,

iii. Invariants Q12/Q34 (defined in appendix B).

SIMULATION SCENARIO

The simulation study was carried out as follows:

1. A section of the storage ring between two BPMs (des-
ignated as “BPM-a” and “BPM-b”) was selected for
our simulation study. Each element in this section
was modelled with at most quadratic nonlinearity as
described in [6, 7].

2. We assumed that except for one quadrupole magnet
(for which normal and skew quad errors, q

n
and q

s
,

were not known) all the elements between “BPM-a”
and “BPM-b” were fully known.

3. For BPMs, we treated BPM gains, gx /gy , and cross-
plane couplings, θ

xy
/θ

yx
, as unknown parameters.

4. We assumed that four independent linear orbit mea-
surements are available at the two BPMs.

5. With no energy dispersion, model-independent anal-
ysis produced accurate estimates of the unknown lat-
tice parameters. With an energy dispersion, however,
model-independent analysis produced erroneous esti-
mates for the unknown parameters.

6. We showed that accounting for energy dispersion via a
PUNDA model improved the estimate of the unknown
beam parameters by a factor of 10.

The training of this PUNDA model was particularly chal-
lenging because none of the PUNDA model outputs (i.e.
beamline model parameters in this case) were explicitly
measured.

The Effect of Beam Dispersion

To carefully study the effect of beam dispersion, we con-
figured our simulations as follows:

1. All components of the beam between the two
BPMs were fully known and the exact values for
Rba

12, R
ba
14, R

ba
32, and Rba

34 were available.

2. We associated normal and skew quad errors with only
one of the quadrupole magnets. Without loss of gen-
erality, this setup simplified the analysis of the simu-
lation results.

3. We used unity BPM gains and zero roll parameters.

We then simulated the following two scenarios with a linear
model for all elements of the beam:

1. Zero energy dispersion: Results of the model-
independent analysis indicate accurate estimate of all
the decision variables, {Ω}.

2. Non-Zero beam energy dispersion: In this case we
considered two different optimization problems:

(a) Solved the optimization problem for all decision
variables, {Ω} (see Fig. 1). The estimates for
normal and skew quad errors deviated from 0.

(b) We computed the beam invariants exactly (using
Eqs. (3) and (4) in Appendix), and solved the
optimization problem to only estimate BPM pa-
rameters and the normal and skew quad errors.
The estimate for all parameters improved. In
particular, the estimate for normal quad error im-
proved with a factor of 8, while the estimate for
skew quad error improved by a factor of 2.

Motivated by this observation, we developed a PUNDA
model in which the NN block captured the functional de-
pendency of beam invariants on the orbits and energy dis-
persion. A description of this PUNDA model and our sim-
ulation results are presented next.

PUNDA Models for Beamline Model Verification

The block diagram of the PUNDA model for beamline
model verification is shown in Fig. 2. Note that in this
PUNDA model

1. The NN block was trained to capture the functional
dependency of the beam invariants on the independent
orbit measurements and energy dispersion.

2. The PNM block was in fact the NLP problem de-
scribed earlier, in which all outputs of the PUNDA
model (i.e. the lattice parameters) are implicit (i.e.
none are directly measured).

The implicit nature of the PNM block in the PUNDA model
allowed us to investigate the additional challenges intro-
duced by the implicitness of the PUNDA model outputs.
Our simulation study clearly demonstrated that the use
of constraints is critical to the meaningful training of the
PUNDA model. For example, we used a known relation-
ship between the two invariants [5] as a constraint on the
outputs of the NN model.

We varied δP from 0 by ±%203, and verified that ac-
counting for the changes in the beam invariants as a func-
tion of energy dispersion would consistently result in more-
accurate estimates of BPM gains and normal and skew
quad errors. On average, the PUNDA-based approach im-
proved the estimate for normal quad error by a factor of 10,
while the estimate for skew quad error was improved by a
factor of 5 [5].

3In practice, energy dispersion is limited to only a few percent in most
storage rings. The simulation here is designed to examine the effective-
ness of a parametric approach to model independent analysis by exagger-
ating beam energy dispersion.
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Existing Technique for Beamline Model Verification
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Figure 1: Pictorial representation of existing model independent analy-

sis approach for beamline model verification.
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Figure 2: PUNDA model for beamline model verification.
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APPENDIX

To calculate the local Green’s functions and the global
invariants, model independent analysis uses 4 independent

linear orbits. These linear orbits may be extracted from a
complete set of turn by turn X and Y measurements by the
BPMs throughout the ring as the result of one horizontal
excitation and one vertical excitation [3, 8]. Having 4 inde-
pendent orbits, one can conceptually form a non-singular
matrix at “BPM-a” consisting of phase-space coordinates
as follows:

Z
a

=

�
���

xa
1 xa

2 xa
3 xa

4

va
1 va

2 va
3 va

4

ya
1 ya

2 ya
3 ya

4

wa
1 wa
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3 wa

4

�
��� (1)

where xa
i is the horizontal displacement of the particle with

respect to the central trajectory for the i-th orbit, y a
i is the

vertical displacement of the particle with respect to the cen-
tral trajectory for the i-th orbit, va

i = dxa
i

ds is the parti-
cle’s angle with the horizontal plane for the i-th orbit, and
wa

i = dya
i

ds is the particle’s angle with the vertical plane for
the i-th orbit. The variable s indicates the position of the
particle along the central longitudinal trajectory. Note that
only xa

i and ya
i , i = 1, 2, 3, 4, are directly measured. The

measurements at “BPM-b” can then be related to Z
a

using
beam transfer matrix R

ba as follows:
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Under symplectic conditions [1], i.e. when damping in the
ring is offset by the excitation to an equilibrium state, beam
invariants (i.e. constants around the ring) are represented
by an anti-symmetric matrix Q:

Q =
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a
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SZ
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Z
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SZ
b

, S =

�
���

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

�
���

that in general contains 6 independent invariants. With the
assumption of only one horizontal and one vertical excita-
tion, however, only two of these invariants are non-zero:

Q12 = −va
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1 (3)
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The equations for model independent analysis are then de-
rived by noting that the transfer matrix R

ba is symplectic,
i.e.

(
R
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)
S
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)

= S, and that a cleverly selected mea-
surement matrix,
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only contains the available measurements and satisfies:
�Z�Q
(−1)


 �Z�T

= −

�R�S


�R�T

(6)

Expanding Eq. (6), and transforming the left hand side to the mea-
surement frame results in the NLP problem for model indepen-
dent analysis.
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