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Abstract 

We present a method to calculate kinematical 
parameters of a beam subject to a misaligned magnetic 
element. The procedure consists in transforming the 
kinematical parameters of the beam to the reference frame 
in which the magnetic element is aligned, propagating the 
beam through the element, and transforming back to the 
original frame. This is done using rotation matrices 
around the X-, Y-, and Z-axes. These matrices are not 
Lorentz invariant, so the rotations must be relativiscally 
corrected. We describe the transformation matrices, 
present a MatLab® based code that uses this method to 
propagate up to 1000 particles trough a misaligned 
quadrupole, and show some graphical outputs of the code. 

 INTRODUCTION 
A charged particle, in a beam, can be well described, in 

matrix formalism, by a six vector: 

























∆

=

p
p
z

y

x

v ϕ

θ

     (1)  

where x and y are the relative position to the center 
trajectory in horizontal and vertical directions 
respectively, θ and ϕ are their derivative with respect to 
the trajectory position, z is the relative position to the 

synchronous particle and pp∆  is the momentum 
spread.  

In this formalism, each element in the accelerator is 
represented by a six by six operator (transformation 
matrix), which, applied over the eigenstate of the particle 
before the element, results in the eigenstate of the particle 
after the element [1, 2]. 

ivMfv ⋅=      (2) 

where M is the element matrix. 
The basic problem with a misaligned magnet is that the 

corresponding operator is usually unknown. Since we 
know the aligned magnet operator, we propose to change 
the basis of the particle eigenstate to the reference frame 
where the magnet is aligned, in order to perform its 
propagation through the element.  

This paper describes a method to propagate particles 
through misaligned magnets, summarized in the scheme 
presented in figure 1. 

BASIS CHANGE  
The basis change operator depends on the kind of 

misalignment the element presents. Purely angular 
misalignments can be represented by rotation matrices if, 
instead of pp∆ , we use dsdz=ζ , in analogy to 

dsdx=θ  and dsdy=ϕ , as the last coordinate. 
Where s is the synchronous particle longitudinal 
coordinate.  

The classical basis change operators are given by:  

 

 
Figure 1 – Schematics of the basis change procedure. 

___________________________________________  
1 tfsilva@if.usp.br 

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 826
























−

−

=

100000
010000
00cos0sin0
000cos0sin
00sin0cos0
000sin0cos

θθ
θθ

θθ
θθ

zR

  























−
−

=

θθ
θθ

θθ
θθ

cos0sin000
0cos0sin00

sin0cos000
0sin0cos00
000010
000001

xR

 (3) 























−
−

=

θθ
θθ

θθ
θθ

cos000sin0
0cos000sin
001000
000100

sin000cos0
0sin000cos

yR

 

Where the indices indicate the corresponding rotation 
axes [3, 4]. 

Following the scheme shown in figure 1, and using the 
operators presented in (3), we can have the particle 
eigenstate after passing through a misaligned element, 
using the expression: 

if vRMRv ⋅⋅⋅= −1     (4) 

Classical rotation matrices imply in classical 
approximations, so these operators are not Lorentz 
invariant. In order to use this method for high energy 
beams, it is necessary to include relativistic corrections. 

RELATIVISTIC CORRECTIONS 
To make the operators Lorentz invariant, we must 

include a temporal coordinate (ict) in the particle 
eigenstate.  
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The element operator must be corrected accordingly as 
follows: 
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The same modification must be done for the basis 
change operators. 
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This would modify the expression in (4) to: 

i
111

f vλRλMλRλv ~~~~~ ⋅⋅⋅⋅⋅⋅⋅= −−−   (8) 

Where λ is the Lorentz transformation matrix in this 
coordinate system, given by: 
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With γ and β being the usual relativistic parameters [4]. 

SIMULATION CODE 
To simulate these theoretical concepts, we developed a 

MatLab® [5] based code that uses (8) to propagate 1000 
particles through a misaligned quadrupole lens. 

The code generates an output that includes a data array 
that can be manipulated, and a set of maps to help the data 
analysis (phase space and position maps).  

To illustrate the code output, we present results for a 5 
MeV electron beam passing through a 5 cm long 
quadrupole with a 10 T/m gradient. Two different 
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misalignment cases are presented: a) 10º around the Z-
axis (longitudinal); b) 10º around the X-axis (transversal). 

Those misalignments are exaggerated in order to ease the 
visualization.

 
 
 

 
 
 
 
 

As it can be observed, classical and relativistic 
calculations are coincident to misalignments around de  
Z-axis, due to the fact that this is the only Lorentz 
invariant rotation. 

On the other hand, misalignments corresponding to 
rotations around the X- or Y- axes, which are not Lorentz 
invariant, present a significant difference between the 
classic and relativistic results. 
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Figure 2 a) – 10º misalignment around the Z-axis. 

Initial beam  Aligned element beam Misaligned element beam 

Initial beam  Aligned element beam Misaligned element beam 

Figure 2 b) – 10º misalignment around the X-axis (note the Y-axis scale). 
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