
A TCL/TK WIDGET FOR DISPLAY OF MEDM SCREENS*

R. Soliday, ANL, Argonne, IL 60439, U.S.A.

Abstract
A new Tcl/Tk widget has been created to display

MEDM screens inside a Tcl/Tk application. Tcl/Tk parses
the MEDM input files and the appropriate widgets are
created and linked to the associated process variables.
One advantage of this approach is that an X-Windows
emulator is not required to view and manipulate the
MEDM screen under a Windows operating system.
Another benefit is that the MEDM screen can now be
tightly integrated into a scripting language to attach
higher-level logic to various process variable
manipulations. Further details and examples of the new
widget will be discussed.

INTRODUCTION
While preparing for a presentation at the Getting

Started with EPICS (Experimental Physics and Industrial
Control System) [1] lecture series at the Advanced Photon
Source (APS) on the Operations and Analysis Group
(OAG) Tcl/Tk interpreter, a comprehensive demo was
created that would show how to use the channel-access
(CA) extension in OAG Tcl/Tk. The demo was created to
be visually impressive and showcase many of the features
of the CA extension. The demo consisted of a new type
of Tcl/Tk widget to display a Motif Editor and Display
Manager (MEDM) screen [2] with native Tcl/Tk code.
This was done because users at the APS were already
familiar with MEDM and stark contrasts could be made
about the ease of programming in Tcl/Tk compared to C,
which is the language in which MEDM was written. For
the purposes of this paper I will refer to the OAG Tcl/Tk
MEDM screen as the MEDM widget while the original
MEDM program will simply be referred to as MEDM.

Tcl/Tk is a highly used programming language for
controlling machine operations at the APS. Tcl (Tool
Command Language) is a scripting language that is
human readable, scalable, fast, extensible, and cross
platform. Tk is a graphical user interface (GUI) toolkit
and is an extension of Tcl. Many other scripting
languages use Tk as their GUI. Without the need for
compilations between minor changes, the development of
software is relatively fast. GUIs require just a handful of
commands to define them because the Tk library provides
a higher-level interface than most standard C library
toolkits. The OAG versions of Tcl and Tcl/Tk are called
oagtclsh and oagwish. These versions include EPICS CA
and Self Describing Data Sets (SDDS) [3] extensions as
well as others. The OAG Tcl/Tk interpreter also includes
an extensive collection of general-purpose graphical and
non-graphical Tcl/Tk procedures.

To display an MEDM widget inside an OAG Tcl/Tk
application, the name of an MEDM ASCII Display List

(ADL) file is passed to the widget, which in turn parses
the file using native Tcl code. Then the appropriate child
widgets are created to look and behave identically to how
they would have had MEDM been used to display the
screen instead of OAG Tcl/Tk. Not every last feature of
MEDM has been mimicked, but most of it has been, and
additions can be made relatively quickly. While this
widget was not intended to replace well-tested code such
as MEDM, there is one important scenario where this
approach has a clear advantage. Unlike MEDM, no
installations of the Exceed X-server and X libraries [4] are
required to display the screens on Windows computers
using OAG Tcl/Tk.

TCL CHANNEL ACCESS EXTENSION
Bob Daly wrote the original version of the Tcl CA

extension. Claude Saunders rewrote it while he was still
with the Operations and Analysis Group in 1996. Over
the years this code has been expanded upon and
improved. With it you can take a standard Tcl/Tk
interpreter and dynamically load the extension to provide
commands to access process variables (PVs). PVs can be
linked to Tcl/Tk variables. The values can be changed
locally and in turn set the corresponding PV in the IOC.
PV values in an IOC can also be monitored so that the
corresponding Tcl/Tk variables can track PV value
changes.

One of the main advantages to this design is that no
external programs are required in order to interact with
PVs, which results in a noticeable increase in speed.
There is also a benefit to be gained because only one CA
search per PV is required for the duration of the execution
of the Tcl/Tk script. If an external program were used, it
would have to reconnect to PVs each time it was
executed. So by using the CA extension, the network
load can be reduced.

The Tcl/Tk CA extension is written in C to gain a speed
advantage compared to straight Tcl/Tk scripting code.
This also allows it to interface directly with the EPICS
code. The CA extension has commands to search, poll,
and set PVs. These commands come in two flavors,
blocking and nonblocking. The blocking version blocks
execution until all the PVs have responded. These
commands are more straightforward and therefore easier
to use. The nonblocking commands keep the GUI
responsive if there are any timeout issues where a PV is
not responding. They also make it possible to isolate a
non-responsive PV from a larger list of PVs. In the case
of the MEDM widget, nonblocking commands were used
because GUI responsiveness and identification of non-
responsive PVs was important. Another type of command
that the CA extension provides is the PV monitoring
commands, which also come in two flavors. The first will
update the associated Tcl variable when it is read. This

*Work is supported by U.S. Department of Energy, Office of Basic
Energy Sciences, under Contract No. W-31-109-ENG-38.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

3393 0-7803-8859-3/05/$20.00 c©2005 IEEE

means that if the variable is displayed in the GUI, it will
not automatically change when the PV changes. In the
MEDM widget this command is used in conjunction with
a procedure that runs every half-second to update the
widgets. This method is used to reduce screen flicker in
child widgets that may otherwise update at an
unnecessarily fast rate. The second type of monitoring
command updates the Tcl variable and any widgets with
which the variable is associated. These are used in
widgets that are normally only going to be changed by the
user, such as entry boxes.

MEDM WIDGET
To create an MEDM widget inside of an OAG Tcl/Tk

application such as that shown in Figure 1, an MEDM
ADL file is required. The command to create the widget
is called APSCreateADLScreen and accepts three
arguments. The first is the name of the MEDM ADL file,
the second is the name of the parent OAG Tcl/Tk widget,
and the third is an optional macro command. The macro
option performs the same function as it does in the
MEDM code. It replaces one string with another in the
ADL file before it is parsed.

The main backdrop of the MEDM widget is a Tcl/Tk
canvas widget on which all other widgets are drawn.
After creating the canvas widget, the procedure
APSParseADLFile is called. This is passed the name of
the canvas, the macro definition, and a unique ID so that
multiple MEDM widgets can be created in the same

application. This procedure calls various other procedures
to parse and extract all the required information from the
ADL file. The various child widgets are then created on
the canvas, such as shapes, plots, entry boxes, labels,
buttons, etc. as the ADL file instructs. This also includes
setting the proper geometry and color map as defined in
the ADL file. The child widgets are also associated with
Tcl/Tk variables that will soon be connected to PVs.
Most of the child widgets are created using built-in Tcl/Tk
widgets and then changing some default properties to
make them appear like standard MEDM widgets. Two
exceptions to this are the plot widget and the bar widget.
These two types of widgets were designed from scratch to
look and behave like the standard MEDM widgets.

The next step in APSCreateADLScreen is to create
three parallel lists of Tcl/Tk variables, PV names, and PV
connection states. It then runs the CA extension
command to link to all the PV variables in a nonblocking
manner. At this point it draws the entire MEDM widget
on the screen. Prior to this the widget was hidden until it
could be displayed in its entirety when it was finished. A
timed-event procedure is then initiated to check which
PVs have connected. When they have connected, the
connection state variable is updated appropriately. Also
the precision of the variable is detected and used in the
display of the value. The maximum and minimum
allowed values are also used now to set the proper limits
to bars and scales. With radio buttons the choices are read
and the appropriate radio buttons are created. Once any

Figure 1: OAG Tcl/Tk application with MEDM widget.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 3394

PV has connected, the appropriate CA monitoring
command is initiated on that PV. If one or more PVs fail
to connect, the timed event procedure to check for
connections is setup to run again after 0.1 seconds.

A separate timed-event procedure is also set up to run at
half-second intervals. Any changes to PVs associated
with labels, bars, and plots will now be reflected in the
widget when this procedure runs. When the user interacts
with child widgets that can be changed, such as entry
boxes, scales, and buttons, the CA extension command to
set the PV is called to update the PV to the desired value.

COMPARISON
The behavior of the OAG Tcl/Tk MEDM widget for

most ADL files is almost the same as the corresponding
file being displayed by MEDM. A few differences still
remain, e.g., support for background images has not yet
been included. Also there is no editing mode for the
MEDM widget.

The GUI appearance is extremely similar. Much of this
is due to the font selection algorithm that was tested by a
trial and error method to reproduce the same font size and
style. Different child widgets have different algorithms,
but they are all based on the height of the child widget.

The number of lines of code for the OAG Tcl/Tk
MEDM widget is 1865 while MEDM has 67,195 lines of
code. This is a great example of Tcl/Tk being easier and
quicker to code than C code. In fact, the entire project

took just over a week to complete. To be fair, the code to
allow editing in MEDM is extensive.

While the MEDM does have an execution speed
advantage, the OAG Tcl/Tk MEDM widget is not slow
and does not occupy too much CPU time. The casual user
should not notice a difference in GUI responsiveness.

MEDM was designed for UNIX systems but will run on
Windows computers if the Exceed X-server is already
installed. The OAG Tcl/Tk MEDM can run on UNIX
systems as well as Windows computers without the
Exceed X-server. This can potentially lead to a cost of
deployment savings for users and their employers since
the Exceed X-server is not available for free.

REFERENCES
[1] L. Dalesio, M. Kramer, A. Kozubal, “EPICS

Architecture,” Proc. ICALEPCS 1991 Conference,
Tsukuba, Japan, pp. 278-281 (1992).

[2] K. Evans, Jr., “An Overview of MEDM,” Proc.
ICALEPCS 1999 Conference, Trieste, Italy, pp. 466-
468 (1999), www.jacow.org.

[3] M. Borland and L. Emery, “The Self-Describing Data
Sets File Protocol and Program Toolkit,” Proc
ICALEPCS 1995 Conference, Chicago, Illinois, pp.
653-662 (1996).

[4] Exceed is a product of Hummingbird Ltd., Toronto,
Ontario, Canada.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

3395 0-7803-8859-3/05/$20.00 c©2005 IEEE

