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Abstract

In a linear collider, sources of emittance dilution such as
transverse wakefields or dispersive errors will couple the
vertical phase space to the longitudinal position within the
beam (the so-called ‘banana effect’). When the Intersection
Point (IP) disruption parameter is large, these beam distor-
tions will be amplified by a single bunch kink instability
which will lead to luminosity loss. We study this phenom-
ena both analytically using linear theory and via numerical
simulation. In particular, we examine the dependence of
the luminosity loss on the wavelength of the beam distor-
tions and the disruption parameter. This analysis may prove
useful when optimizing the vertical disruption parameter
for luminosity operation with given beam distortions.

Introduction

To achieve the desired luminosity in a future linear col-
lider, the beams are focused to small spot sizes and the re-
sulting beam-beam forces can be very large. With oppo-
sitely charged beams, the beam-beam forces will lead to a
mutual focusing or pinch which further increases the beam
densities and the luminosity and is referred to as the lumi-
nosity enhancement. In addition, if the beams are offset
from each other, the attractive beam-beam force can bring
the beams closer together possibly recovering some of the
lost luminosity. Unfortunately, if the beam-beam force is
too large, this attraction can lead to an instability much like
a plasma two-stream instability which is referred to as a
single bunch kink instability [1].

The beam-beam force and resulting kink instability can
be parameterized with the disruption parameter: Dx(,y) ≡
σz/[fx(,y)] = 2Nbreσz/[γσx(,y)(σx + σy)], where fx(,y)

is the focal length due to the beam-beam force; σx(,y,z) is
the rms beam size, Nb the number of particle per beam, re

the electron classical radius, and γ the Lorentz factor. Nor-
mally, for a flat beam, Dx � 1, and hence the beam acts
as a thin lens in the horizontal plane. In contrast, Dy � 1
and the two beams begin to oscillate in the vertical plane
during the collision with the number of oscillations given
by n ≈ 0.15

√
Dy . In simulations with Dy ≤ 10, the

beam-beam force is observed to reduce the luminosity loss
due to centroid offsets, however for larger Dy the luminos-
ity becomes increasingly sensitive to small offsets [2]. In
this paper, we investigate the impact of internal distortions
in the beam. The many sources of emittance dilution lead
to vertical position and angle offsets {yw(z), y′w(z)} of the
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slice centers as a function of their longitudinal position z
in the beam. It can be expected that the two-stream insta-
bility will resonantly amplify distortions with wavelengths
that are close to resonance.

Equations of Motion

Suppose that two beams move towards each other. For
simplicity, their longitudinal distribution is assumed to be
uniform, and their transverse distribution to be Gaussian.
Assume that the beams collide with a relative vertical dis-
placement and each beam is assumed to have the same
number of particles per unit length λ but with opposite
charge. Assuming no redistribution of charges occurs dur-
ing the collision, the Lorentz force near the axis is [4]

Fy,inc ≈
4λe2

4πε0

Yd

σy(σx + σy)
, (1)

where e is the elementary charge, ε0 the vacuum permittiv-
ity, Yd the particle vertical displacement relative to the cen-
troid of the other beam. We are interested in the luminos-
ity loss due to the variation of the beam centroid along the
bunch; hence, we need to integrate over the transverse dis-
tribution. Assuming small offsets of the two beams, this re-
duces the effective incoherent force in Eq. (1) by a factor of
2 to get the so-called coherent force of Fy,coh ≈ Fy,inc/2.
We study cold beams, and the equations of motion for the
two beams, moving with velocity v, read [1]

(
∂

∂t
± v

∂

∂s

)2

yl(,r) = −
2λrec

2
[
yl(,r) − yr(,l)

]

σy(σx + σy)γ
, (2)

where, yl(,r) is the centroid displacements of the electron
(positron) beam from the reference axis. In the above
model, the evolution of the beam envelope due to the pinch
effect is not included. However, since the beam-beam in-
stability dominates, this simplification is quite good, as evi-
denced by the comparison with simulation in the following.

Initial Value Problem

The internal coordinate z is introduced to label the slice
at a distance z from the head of the beam, and 0 < z < l,
where l is the beam length. We define t = 0 when the heads
of the two beams collide. We also define s = 0 as the IP
where the two beams first collide. The positive s direction
is to the right. Hence in the left-coming beam, the slice z
will be located at s = vt− z at time t when the beam head
is at the location s = vt. In the right-coming beam, we also
introduce z to describe the distance between a certain slice
and the head of the beam, and again 0 < z < l. Hence,
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when the head of the right-coming beam is at location s =
−vt at time t, the slice z is at location s = −vt+z. We now
use (s, z) as the independent variable pair, and we define
k2
0 ≡ 2λre/ [σy(σx + σy)γ]. Please refer to Fig. 1 of Ref.

[5] for definition of the coordinate system.
Now let us study the case where the right-coming beam

has an initial sinusoidal modulation, and the left-coming
beam is undistorted and on-axis. The initial conditions are
then

yl(0, z) = 0 and
∂yl(s, z)

∂s

∣∣∣∣
s=0

= 0 , (3)

for the left-coming electron beam. Similarly,

yr(0, z) = yr0 sin(kz) and
∂yr(s, z)

∂s

∣∣
∣∣
s=0

= 0 , (4)

for the right-coming positron beam. The equations of mo-
tion together with the initial conditions yield the following
integral representation of the solution

yl(s, z) = yl(z/2, z) cos [k0(s− z/2)]

+
∂yl(s, z)

∂s

∣∣
∣∣
s=z/2

sin [k0(s− z/2)]
k0

(5)

+ k0

∫ s

z/2

ds′yr(−s′, 2s′ − z) sin[k0(s− s′)] .

Similarly, for the right-coming beam, we have

yr(s, z) = yr(−z/2, z) cos [k0(s + z/2)]

+
∂yr(s, z)

∂s

∣∣∣
∣
s=−z/2

sin [k0(s + z/2)]
k0

(6)

+ k0

∫ s

−z/2

ds′yl(−s′,−2s′ − z) sin[k0(s− s′)].

Series Solution

Let us solve the above set of Eqs. (5) and (6) via a series
solution approach [6, 7]. We expand yr(,l)(s, z) in a series
of powers in k0

yr(,l)(s, z) =
∞∑

n=0

y
(n)
r(,l)(s, z) , (7)

and obtain the nth-order term from the (n−1)th-order term.
According to Eq. (5), for n = 1, 2, 3, · · ·, yl(s, z) would be

y
(n)
l (s, z)=k0

∫ s

z/2

ds′y(n−1)
r (−s′, 2s′−z) sin[k0(s−s′)]; (8)

and similarly, according to Eq. (6), for yr(s, z), we have

y(n)
r (s, z)=k0

∫ s

−z/2

ds′y
(n−1)
l (−s′,−2s′−z) sin[k0(s−s′)]. (9)

General Solution According to Eqs. (5) and (6)
with the initial conditions in Eqs. (3) and (4), we
get, y

(0)
r (s, z) = yr0 sin(kz) cos [k0 (s + z/2)], and

y
(0)
l (s, z) = 0. Noticing that, in the limit of k0 → 0,

we have y
(0)
r (s, z) = yr0 sin(kz). This is just the initial

modulation profile.
For a large Dy , which leads to many oscillations during

the collision, we are eligible to consider the limit of k0s �
1 and also ks � 1. Therefore, we keep only the largest
terms in k0s and ks. The asymptotic solutions are:

yr(s, z) ≈ iyr0
kk0

k2
0 − 4k2

√
|2s + z|

z
(10)

× J1

(
ik0

√
z|2s + z|/2

)
cos[k0(s + z)],

for −z/2 > s > −(l + z)/2; and

yl(s, z) ≈ −yr0
kk0

k2
0 − 4k2

(11)

× J0

(
ik0

√
z(2s− z)/2

)
sin[k0(s− z)],

for (l+z)/2 > s > z/2. Notice that, the solutions given in
Eqs. (10) and (11) have a singular point at k0 = 2k, which
indicates a resonance behavior studied in the following.

Resonance Case At resonance, k0 = 2k, the recursion
relation of Eq. (8) and (9) should be revised by replacing
k0 with 2k. The asymptotic solutions are:

yr(s, z) ≈ yr0

2
J0

(
ik

√
z|2s + z|

)
sin[2k(s + z)], (12)

for −z/2 > s > −(l + z)/2; and

yl(s,z)≈
iyr0

2

√
2s−z

z
J1

(
ik

√
z(2s−z)

)
cos[2k(s−z)], (13)

for (l + z)/2 > s > z/2.

Luminosity

The luminosity is defined as [8]

L = 2N2
b v

∫
dxdydsdt nl(x, y, zl, t)nr(x, y, zr, t),

(14)
where zl = vt − s and zr = vt + s and we have as-
sumed the same number population Nb in each beam and
head-on collisions. The distribution function is normalized
to unit, i.e.,

∫
dxdyds nl(,r)(x, y, zl(,r), t) = 1. Assum-

ing Gaussian transverse distributions and a uniform longi-
tudinal distribution, and ignoring the luminosity enhance-
ment due to beam-beam pinch, the ‘geometric’ luminosity
is L00 = N2

b / [4πσxσy]. Finally, the nominal luminosity
L0, including the effect of the luminosity enhancement, is
found by multiplying by the enhancement factor HD which
is typically between 1 and 2 for flat beam collisions, i.e.,
L0 = L00HD. Now, let us study the luminosity loss due
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Figure 1: The L/L0 as a function of 2k/k0. The “square”
is the simulation for truncated (at ±

√
3σz) Gaussian distri-

bution; the “�” is the simulation for a uniform distribution;
the “	” is the result with solutions in Eqs. (10) and (11);
the “×” is the result with solutions in Eqs. (12) and (13).

Figure 2: The L/L0 as a function of yr0/σy with “square”
having same meaning as in Fig. 1 and the curve is the result
with solutions in Eqs. (12) and (13).

to the beam-beam disruption. Given the analytical general
solutions in Eqs. (10) − (13), we can numerically compute
the luminosity. On the other hand, we also simulate the
luminosity loss via GuineaPig [9] for longitudinal uniform
distribution and Gaussian distribution as well.

Table 1: Summary of the parameters for the US Cold [3].
E (GeV) Nb (1010) σx (µm)

250 2.0 0.543
σx′ (µrad) σy (nm) σy′ (µrad)

36 5.7 14
σz (m m) σδ (%) Dy

0.3 0.1 22.0

Results

Now let us illustrate how the beam-beam effect leads to a
large luminosity loss, even if the emittance is not degraded
much. We study the ILC US Cold [3] with the parameters
in Table 1. Shown in Fig. 1, we find that for yr0 = σy/3,
the beam-beam interaction leads to a resonance where 14
% luminosity loss is observed. Now, if one does not notice
the instability studied in this paper, then he will find 3 %
emittance growth, which leads to only 1 % “geometric” lu-
minosity loss simply due to the initial distortion. Hence,
the geometric emittance growth in this case is not a good

Figure 3: The resonance luminosity Lres as a function of
Dy . The dotted, dashed, and dotted-dashed curves stand
for the cases where yr0/σy = 1/3, 1/2, and 1, respectively.
As a comparison, the solid curve stands for the case with
no modulation, i.e., L0, or yr0 = 0.

measure for the luminosity loss [10]. Similar situation is
found for different yr0. In Figs. 2, we show the luminosity
loss as a function of yr0. Once again, very good agreement
between the analytical result and the simulation is found.

The study shows that the luminosity loss computed ana-
lytically agrees with the simulation results quite well. The
results for a longitudinal uniform distribution is very close
to those for a Gaussian distribution. The study also indi-
cates that this luminosity loss due to the beam-beam inter-
action is very sensitive to the disruption parameter Dy . To
illustrate this dependency, we plot in Fig. 3, the luminos-
ity at resonance, i.e., with solution given in Eqs. (12) and
(13), as a function of Dy which relates to k0(= 2k). In our
study, we vary Nb alone to vary Dy . Without the beam-
beam instability considered in this paper, increasing the
disruption parameter Dy will increase the luminosity L0

quadratically. On the other hand, the beam-beam instability
introduces a large luminosity loss when Dy increases. This
leads to the phenomena that beyond certain value of Dy,c

(Dy,c ∼ 20 in our paper), increasing Dy will no longer
efficiently increase the luminosity. To conclude, the lumi-
nosity loss due to beam-beam instability is substantial, and
needs serious consideration in future ILC design.
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