A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ke, M.

Paper Title Page
RPPE006 Air Temperature Analysis and Control Improvement for the Storage Ring Tunnel 1027
 
  • J.-C. Chang, Z.-D. Tsai
    NSRRC, Hsinchu
  • J.-R. Chen
    NTHU, Hsinchu
  • M. Ke
    NTUT, Taipei
 
  The stability of the electron beam orbit had been observed to be sensitive to the utility conditions. The stability of air temperature in the storage ring tunnel is one of the most critical factors. Accordingly, a series of air conditioning system upgrade studies and projects have been conducted at the Taiwan Light Source (TLS). Computational fluid dynamics (CFD) is applied to simulate the flow field and the spatial temperature distribution in the storage ring tunnel. The circumference and the height of the storage tunnel are 120m and 2.8m, respectively. The temperature data and the flow rates at different locations around the storage ring tunnel are collected as the boundary conditions. The k-epsilon turbulence model is applied to simulate the flow field in the three dimensional space. The global air temperature variation related to time in the storage ring tunnel is currently controlled within ±0.1 degree C. However, the temperature difference between two different locations is as high as 2 degree C. Some measures improving the temperature uniformity will be taken according to the CFD simulation results.