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Abstract
 A complete, three-dimensional theory of Compton

scattering is described, which fully takes into account the
effects of the electron beam emittance and energy spread
upon the scattered x-ray spectral brightness. This
formalism is then applied to Compton scattering in a
three-dimensional laser focus, and yields a complete
description of the influence of the electron beam phase
space topology on the x-ray spectral brightness; analytical
expressions including the effects of emittance and energy
spread are also obtained in the one-dimensional limit.

1 INTRODUCTION
In the linear regime, where the 4-potential amplitude

satisfies the condition 0/ 1,�eA m c  and in the absence of

radiative corrections, in the so-called Thomson scattering
regime, where the frequency cutoff is 2

0 / ,� �ω m c  as

measured in the electron frame, the spectral photon
number density scattered by an electron interacting with
an arbitrary electromagnetic field distribution in vacuum
is given by the momentum space distribution of the
incident vector potential at the Doppler-shifted frequency
[1]:
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Here, ( ) ( )ˆ, 1,s
s s skµ ω ω= = nk  is the 4-wavenumber of

the wave scattered in the observation direction ˆ ,n  at the

frequency ;sω  2
0/ 2 1/137.036e hcα ε= �  is the fine

structure constant; ( )0
0 0,uµ γ= u  is the electron initial 4-

velocity; ( )0
00,xµ = x  is its initial 4-position, and we have

introduced the scattered light-cone variable,

0 0 0 .s
s s su kµ

µκ γ ω= − = − ⋅u k  The term ( ) 01 sκ+ ⋅  k/ u  is

to be considered as an operator acting on the Fourier
transform of the spatial components of the 4-potential,

( ), ,Aµ = � A
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while the term ( )0exp i ⋅k x  gives rise to the coherence

factor.

2 THREE DIMENSIONAL LASER FOCUS
The transverse laser profile is specified at the focal

plane, and propagated using the method discussed in [2],
where the vector potential derives from a generating
function: ;= ∇×A G  in this manner, the Coulomb gauge

condition, 0,∇ ⋅ =A  is automatically satisfied. For a
linearly polarized Gaussian-elliptical focus, with focal
waists 0 0 and ,x yw w  and a monochromatic wave at the

central frequency 0 1,ω =  with a Gaussian envelope of

duration ,t∆  the 4-potential is represented in momentum-
space by
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Here, we recognize the -spectrum,⊥k  the frequency

spectrum, the propagator, ( ) ,k k µ
µδ  and the curl

operator, as expressed in momentum space.

2.1 Spectral Brightness
The scattered radiation can now be determined by using

Eq. (1); to obtain an analytical answer than can be further
exploited to include the phase space topology of the
electron beam interacting with the laser pulse, the paraxial

propagator formalism is used: ( )2 2 2 ,z x yk k kδ ω− − −  is

replaced by ( ) ( )2 2
0 0/ 2 / 2 .z x yk k k k kδ ω − + + 

Finally, the normalized vector potential is given by

0
0 2

0 0 0 0

2
,

e
A

m c c w tω ε π
=

∆
�

 as expressed in terms of the

laser pulse energy 0 ,�  duration ,t∆  frequency 0 ,ω  and

focal spot size 0.w
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It proves convenient to introduce the “cold” spectral
brightness, defined as
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Note that 0S  is a function of the electron initial energy,

,γ  scattering angle, ,θ  and incident angle, ;ϕ  we can

then perform incoherent summations over the electron
initial energy and momentum distributions to study the
effects of energy spread and emittance. For conciseness,
the scattered frequency is now labeled .ω

We start with the beam energy spread; the “warm”
beam brightness is given by
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where we have used a Gaussian distribution to model the
beam longitudinal phase space, and where the analytical
value of the normalization constant is very nearly equal to
the exact value.

The integral over energy given in Eq. (5) can be
expressed analytically by Taylor expanding the spectral
brightness around the mean value of the beam energy, 0 .γ

Since the angular function 
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slow-varying function of the energy, we can first write
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we then use the following approximation:
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The integral in Eq. (6) can now be performed
analytically to yield the spectral brightness degradation
due to energy spread:
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φ∆=� � Since  and � �  are both linear functions of

,�  which is equal to zero at the peak of the x-ray

spectrum, the exponential is equal to one for .xω ω=  In

addition, the factor ( ) 2

0/φ γ γ∆ ∆    in the square root

shows that the relative energy spread must be compared to
the normalized laser pulse duration, which is equivalent to
the number of electromagnetic wiggler periods; this
indicates that to increase the x-ray spectral brightness by
lengthening the drive laser pulse, the requirement on the
electron beam energy spread becomes increasingly
stringent. Finally, we note that as the normalized
Gaussian energy distribution tends to a Dirac delta-
function for zero energy spread, we have

( ) ( )0 0 0, , 0, , , , , .S Sγ ω γ γ θ ϕ ω γ θ ϕ∆ = =

2.2 Emittance Effects
We now turn our attention to the influence of the

electron beam emittance:
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where the spread of incidence angle is given in terms of

the beam emittance by 
0

,
br

ε
εϕ

γ
∆ =  and where 0ϕ  is the

mean incidence angle, defined by the laser and electron
beams. Note the important geometrical correction term,

,θ δϕ−  which corresponds to the fact that the scattering

angle is measured with respect to the initial electron
velocity. The effects of emittance are found to be
independent of 0 .ϕ  Considering the on-axis x-ray spectral

line, it is clear that emittance both broadens the spectrum
and decreases the peak spectral brightness; in addition, a
low energy tail develops, with a structure related to the
interference of the different x-ray cones radiated by the
focusing electron beam.

At this point, the combined effects of energy spread and
emittance can be studied by varying the bunch charge and
modeling the behavior of the electron beam phase space
as follows:
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where the first term is the spread due to the finite duration
of the bunch in the rf accelerating bucket of frequency

/ 2 ,rfω π  while the second term corresponds to space-

charge; for the emittance, an empirical linear scaling with
charge is chosen, with ( ) ,q qε σ�  and

1 -mm mrad/nC.σ π=  This results in brightness first

scaling linearly with the charge, reaching a maximum
near 0.5 nC, and starting to degrad thereafter under the
combined influences of energy spread and emittance. This
optimum value of the charge is quite interesting as it very
nearly corresponds to the state-of-art for high-brightness
photoinjectors.

3 CONCLUSIONS
In conclusion, we have presented a detailed theoretical

description of the influence of the electron beam phase
space on the brightness of Compton x-ray sources that are
being developed for a number of new research areas,
including the advanced biomedical applications presented
in the Introduction. The main results obtained are the
following: first, a fully covariant and nonlinear solution to
the motion of an electron in plane wave of arbitrary
intensity has been presented; second, the longitudinal
phase space of the electron beam has been modeled in
terms of energy spread, and an analytical expression of
the corresponding x-ray brightness degradation has been
derived, which clearly emphasizes the relation between
the laser pulse bandwidth and the energy spread in
determining the x-ray spectral brightness; third, the
effects of the transverse electron bunch phase space have
been included and shown to be independent from the

interaction geometry; in addition, emittance can cause a
low energy tail to develop in the x-ray spectrum, with a
structure related to interference effects between x-ray
cones pointing in different directions; fourth, the optimum
bunch charge as been determined by taking into account
the combined influence of the energy spread (both space-
charge and bunch duration effects) and beam emittance;
fifth, the laser focusing also degrades the x-ray brightness,
and this effect is found to be strongly dependent upon the
incidence angle between the laser and electron beams; the
optimum geometry corresponds to head-on collisions, for
which the laser focusing is a second-order correction;
finally, 3D effects, including the shaping of the spectrum
due to the convective terms induced by the electron
motion through the focus, and timing jitter have been
modeled precisely.
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