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Abstract: 
Beam-envelope radius, envelope angle, and beam 

emittance can be derived from measurements of beam 
radius for at least three different transport conditions. We 
have used this technique to reconstruct exit parameters 
from the FXR injector and accelerator. We use a 
diamagnetic loop (DML) to measure the magnetic 
moment of the high current beam. With no assumptions 
about radial profile, we can derive the beam mean squire 
radius from the moment under certain easily met 
conditions.  Since it is this parameter which is required for 
the reconstruction, it is evident that the DML is the ideal 
diagnostic for this technique. The simplest application of 
this technique requires at least three shots for a 
reconstruction but in reality requires averaging over many 
more shots because of shot to shot variation. Since DML 
measurements do not interfere with the beam, single shot 
time resolved measurements of the beam parameters 
appear feasible if one uses an array of at least three DMLs 
separated by known transport conditions. 

1 INTRODUCTION 
 A common technique for determining accelerator 
beam parameters, R, R�, ε, requires the measurement of 
the beam radius for at least three different settings of  the 
magnetic transport separating the reconstruction point and 
the downstream measurement location. Here R is the 
envelope radius, R�= dR/dz, the envelope slope and ε is 
the emittance. Although in theory the beam energy could 
also be obtained with a fourth measurement, γ is generally 
obtained from a separate measurement. The data can be 
fitted with an envelope equation to obtain the input 
parameters or the latter can be found using matrix 
transport theory. All of this is straightforward and has 
been done many times. The reduction of optical images of 
the beam interaction with a thin foil is the common 
method used on induction linacs for radial measurements. 
The interest of this report lies in the use of diamagnetic 
loops (DML) to measure the beam magnetic moment from 
which under certain easily met conditions one can derive a 
time resolved measurement of the mean square radius, 
independent of beam profile. As the discussion below 
shows, this is the input parameter required for beam 
reconstruction using matrices. This approach has a 
number of advantages, the most important being that it is a 
non-interfering, totally electrical, measurement.  
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2 DML RADIUS MEASUREMENTS 
 The development of the DML measurement 
technique has been ongoing for a number of years both by 
the author [1] and by workers at LANL [2-4]. When a 
beam transported by an axially symmetric field encounters 
a change in axial field strength, it experiences a radial 
field which induces an azimuthal current component. This 
current, spread over a finite cross section, produces an 
axial magnetic moment. The change of the flux linking a 
beam encircling wire loop, the DML, due to the changing 
magnetic moment induces the DML voltage signal. The 
high beam current, relatively low beam energy, guide field 
strength and symmetry, and equilibrium beam radius of 
induction linacs combine to make the time resolved 
measurement  and interpretation of this signal feasible.  

The beam magnetic moment can have three 
components   

M(z) = Mr(z) + Mc (z) + Mρ(z) .  
Of these components 
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1
2

ρvθ

βc
Iz       (1)  

 (where ρ= (<x>2+<y>2)1/2) is finite if the beam centroid 
intercepts the plane of the DML off axis and its velocity 
vector is skew to the axis. The second component 

Mc (z) = −
1

4π
(

e
γmβc

) < ψ(0) > Iz       (2) 

is the contribution due to the total  magnetic flux linking 
the cathode. Thus, if the cathode field is set so that the 
total flux linking it is minimized and the beam is steered 
on center in the plane of the loop, the first component, 
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 can be made dominant if the axial magnetic field at the 
loop per unit electron energy is strong enough. In deriving 
Equation (3) the common paraxial approximations and 
conservation of canonical angular momentum in the axial-
symmetric guide field leads to a relation between the theta  
current component and the axial current. Note that r is the 
beam rms radius and Equation (3) is independent of any 
assumptions about the beam radial profile or azimuthal 
symmetry (as long as I<< IAlfven ). 
 Since values of beam current and position are 
needed to reduce the loop data, we have combined all of 
these measurements into one diagnostic package. This was 
possible with rather simple modifications of our standard 
beam current and position monitor. This �beam bug� is a 
resistive-foil wall-return-current monitor.[5] A ferrite 
torus, by increasing the inductance of the parallel circuit, 
forces the bulk of the beam return wall current to flow 
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through a 5µm thick Nichrome foil cylinder whose 
diameter matches the beam tube and whose length is ∼ 30 
mm. Beam current and centroid position are determined 
from the voltage drop across the foil measured at eight 
azimuthally symmetric locations. A cross-linked 
polystyrene cylinder is located  between and coaxial with  
the foil and the ferrite core. One or two turns of  0.018� 
Formvar insulated copper wire are wrapped and glued in a 
groove centered on the cylinder. O-rings at the cylinder 
ends form the vacuum seal. On the time scale of the 
experiment flux is conserved within the beam tube 
consequently a loop located at the wall would not detect a 
signal. The ferrite cavity behind the resistive foil allows 
some axial flux to penetrate the foil, return external to the 
loop and a signal to be generated.  

In our design the loop links both the beam and the 
beam bug foil, consequently the signal it detects is due 
both to the beam and to the azimuthal currents induced in 
the foil by the beam. The beam moment is 

 
M(t ) = k[τ 1τ 2

dV(t)
dt

           + (τ 1 + τ 2 )V(t ) + V(t' )dt' ]
−∞

t

∫
   (4) 

where V(t) is the DML signal,τ 1 ,τ 2  are the foil and loop 
L/R time constants and k is the calibration constant. For 
calibration the beam bug was sandwiched between two 
lengths of stainless steel tubing which simulate the flux 
conserving beam tube and the loop response to a long, 
small diameter �pulsed-solenoid of known moment, 
inserted along the loop axis, was measured. From 
simultaneous measurement of the current in the standard  
moment and the loop response the above relation was 
used to find the best values of k, τ 1 ,τ 2 .  

If the magnetic field at the DML is set to zero and the 
beam centroid is steered to pass through the DML center 
then any remaining signal will be due to a finite flux 
linking the cathode. This flux is that due to the injector 
field minus flux generated by a bucking coil. The proper 
setting of the bucking coil for minimum flux linkage can 
be determined from DML measurements.(Figure 1) 
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Figure 1: Mc/Iz vs. Bucking Coil Current. The DML bias 
field is set to zero and beam centred  at DML.  

Using Equation 2 we can calculate the expected value of 
Mc/Iz and compare with the measured values of Figure 1. 
We use as a model profile for the current emitted from the 

cathode, Jz(r, 0) =
Iz

πR2(1+ ν 2)
(1+ ν

r 2

R2 )  where ν is 

the shape parameter, -1≤ ν. For ν = 0, the profile is flat 
while if ν = -1, the profile is parabolic and for ν = 1 the 
profile is somewhat hollow. This distribution gives for the 
current weighted average of the cathode flux, 
(

M
I

)calc = −
1.76E07 R(0)2

4(2+ ν)γβc
[(1+

2
3

ν)B(0, 0)+ (
1
3

+
ν
4

)∆B]    (5) 

where R(0) is the cathode radius. B(0,0), the field on axis 
at the cathode surface is known as a function of injector 
tune and bucking coil current, and B(0,r)= 
B(0,0)(1+∆B(r/R(0))2). For the data of Figure 1, γ=8, 
R(0)=0.054 m and ∆B= -4.5 G. In Figure 2 we plot 
calculated values versus measured for two values of ν.  
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Figure 2: (Mc/Iz)calc vs (Mc/Iz)meas for the data of Figure 1 
and two values of the parameter ν. 

 
The beam profile at the cathode is expected to be 
somewhat hollow because of the beam potential. The 
good agreement between the calculated and measured 
values strengthens our confidence in our calibration. 
 A direct comparison of foil and DML 
measurement of beam radius at the same axial location is 
not feasible on FXR; the minimum separation of the two 
measurements is ~ 50 cm, a distance over which the radius 
can vary considerably. Instead one must compare the 
results of reconstructing the beam parameters using the 
two diagnostics. This test will be carried out in the near 
future. 
  

3 BEAM  RECONSTRUCTION 
We follow a method outlined by Paul [6] for 

reconstructing the beam conditions. Let σσσσ0 be the matrix 
characterizing the phase space ellipse bounding the beam 
at the reconstruction point. For a round beam the non-zero 
elements are taken to be: 

a ≡ (σ11)0 = (σ33)0 
b ≡ (σ12)0 = (σ21)0 = (σ34)0 = (σ43)0 
c ≡ (σ22)0 = (σ44)0 
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The desired exit beam parameters are found from the 
elements of this sigma matrix. 
 R0 = a1/2 
 R�0= dR0/dz= b/a1/2    (6) 
 εx= εy= ε= (ac-b2)1/2 

R is the four-dimensional transformation matrix relating 
the sigma matrix at this point to measurement locations 
downstream by σ σ σ σ = Rσσσσ0RT. In our approach R= L2FL1 
where L1 is the transfer matrix for a drift space of length 
L1 between the exit and a solenoid, described by the 
transfer matrix F, and L2 is the transfer matrix for a drift 
space of length L2 between the solenoid and the 
measurement location. Three values of solenoidal field 
with the measurement of the resultant beam radii are 
needed to reconstruct the beam parameters. If rj

2 (j=1,2,3) 
are measured values of mean square radius for three 
different values of R 
 r j2 = (σ11)j = Cj1 a + Cj2 b + Cj3 c    (7) 
where Cj1 , Cj2, Cj3  are known combinations of the 
elements of the transformation matrix, R, 
 Cj1= [R11

2 + R13
2]j  

 Cj2= 2[R11R12+ R13R14]j      (8) 

 Cj3= [R12
2 + R14

2]j 
The coefficients of Equation (7) are obtained from R and 
Equations (7) solved for a,b,c  and R, R� and ε obtained 
from Equations (6).   

4. APPLICATION 
 We have begun the use of the DML technique on 

the LLNL FXR induction linac. FXR has a maximum 
energy ~18Mev, maximum current of ~4000 A and pulse 
length of~80 ns fwhm. It is used for the generation of 
flash X-rays, consequently the minimization of the beam 
spot size at the beam target is very important. Beam 
emittance being an important contributor to spot size, we 
plan to use this diagnostic to aid in tuning the accelerator 
for minimum emittance. Initial reconstruction of FXR 
beam parameters at the output of the injector and 
accelerator  are given in Table 1. 

Table 1: Reconstructed beam parameter values  
 γ R (cm) R�(mr) ε(cm-mr) 

Injector 4.7 2.5± 0.2 -64.9±8.5 47.9±8.6 
Accelerator 36 0.90±0.03 -7.1±0.3 11.1±0.5 

 
The values of Table 1 are higher than one would expect 
from FXR but are consistent with recent spot size 
measurements. 

5. DML ARRAYS 
The technique described above requires at least 

three shots to make a reconstruction. As Paul has pointed 
out this technique can be very sensitive to random shot to 
shot errors and measurement accuracy may require 
averaging over many shots. This is true whether foil or 
DML is used for the radial measurement. 

Since, unlike the foil measurement, the DML 
does not interfere with the beam, problems arising from 
shot to shot reproducibility can be avoided or at least 
greatly diminished with the use of an array of loops taking 
data simultaneously. One possible loop array for this 
purpose would consist of a loop located at the exit of the 
accelerator, a drift region of length, L1, a second loop 
closely followed by a solenoid of peak field, B, and 
length, Ls  a second drift region of length, L2 , and a third 
loop. For this array, the transformation matrices are: 

R1= I 
R2= L1     (9) 
R3= L2FL1 

The components of these matrices will be used in 
Equations (8) to generate the coefficients of Equations (7) 
where now the input values of the mean square radii will 
be those measured by the three loops. By solving the 
Equation (7) set for a, b and c we can obtain single shot, 
time resolved measurements of the beam parameters.  By 
greatly reducing the number of shots necessary for an 
emittance measurement the application of the DML array 
will make practicable the tuning of FXR for minimum 
emittance. 

CONCLUSIONS 
 We have reported the first use of DMLs for 

reconstructing the induction linac beam rms radius, 
envelope slope angle and rms emittance. We have 
proposed a method which, relying on the non-interference 
of the loop measurement, should allow the use of loop 
arrays to make single shot beam parameter determination 
and bypass the problems arising from shot to shot 
variation. We are now preparing such an array for FXR. 
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