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Abstract 
The angle-integrated flux spectrum of an undulator has 
sharp dropoffs at harmonic photon energies. Its derivative 
therefore shows pronounced peaks with rms width ∆ω/ω 
~ 0.4/nN, where ω is the photon energy, n is the harmonic 
number, and N is the number of undulator periods. For the 
fundamental photon energy of the Advanced Photon 
Source diagnostics undulator, the derivative of the angle-
integrated flux spectrum is a peak with rms width of 
~0.2%. By using this feature, we have successfully 
developed techniques to measure the energy centroid, 
spread, and momentum compaction factor of the APS 
storage ring beam. In this paper, we present analytical and 
numerical analyses of the undulator spectrum derivative 
and examine the sources of experimental errors of this 
technique.  

1 INTRODUCTION 
Non-invasive measurements of the beam energy and 

rms energy spread are essential for the study of electron 
longitudinal beam dynamics. In storage rings, the size of a 
fully damped beam is given by the following 
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where βx is the beta function, ηx is the dispersion function 
at the source point, εx is the horizontal emittance, and 
G V E E/ , the relative rms energy spread of the beam [1]. 
The beam energy measurements are normally performed 
with simultaneous measurements of beam sizes at high 
and low dispersive locations of the magnetic lattice. The 
accuracy of the beam energy measurements is often 
limited by that of the lattice parameters, β x and η x, which 
are difficult to measure with high accuracy. 

In 1996, Tarazona and Elleaume used undulator radiation 
spectra to derive electron beam energy and emittance by 
fitting the experimental spectra to a straightforward 
theoretical model [2]. In that work, the dispersion function 
at the source was no longer required. But a good 
knowledge of the beta function was still needed. 

In this work, we propose a new measurement using the 
undulator radiation that employs a different part of the 
undulator spectrum (measuring the angle-integrated 
spectrum in a narrow energy span near undulator 
harmonics) and a different procedure for data treatment 
(compare the derivative of the spectrum with the model 
calculation). 

We introduce the basics of the technique and discuss 
analytical expressions in Section 2. In Section 3, we 
propose experimental schemes to measure the electron 
beam energy spread and absolute energy. Sources of 

experimental errors and possible single-bunch single-pass 
measurement are also discussed.  

2 BASIC FORMULAE 

2.1 Angular Distribution of Undulator Radiation 
The angular distribution of undulator radiation (within 

a spectral width ∆ω) is given by the following [3], 
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where α is the fine structure constant, ω the photon 
frequency, K the undulator parameter, N the number of 
undulator periods, E =γmc2 the energy of the electron, and 
(θ, ϕ) are polar angles. The superscript (0) means that the 
expression is for electron beams with zero emittance and 
zero energy spread. The fundamental resonance photon 
energy is 
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where λu is the undulator period length. The functions SN 
and B are given by 

( ) ( )

2

1 1

sin sin
, ,N

N
S N

πω πω
ω γ θ ω γ θ

 
=  

 
, (4) 

and 

( )1

cos sin sin 2

cos
cos

1
sin

i p qB K e d
B

K

ωπ ξ γθ ϕ ξ ξ
ω θπ

σ π

γθ ϕ ξ
ξ

γθ ϕπ

 
− +   

−

 −  
=   

     

∫
, (5) 

where p
K

K
 

�

2
0 1 21

2

Z

Z J( , ) /
, and 

2

2
1

1

4 ( ,0) 1 / 2

K
q

K

ω
ω γ

=
+

. 

2.2 Angle-Integrated Spectrum of Undulator 
Radiation for Mono-Energetic Electron Beam 

Integrating over all angles, we obtain the angle-
integrated spectrum 
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Let us define a dimensionless frequency ν and a new 
angle variable µ, 
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where we have used the exact expression P T Q  0� �  and 

the approximation P T S � �� � . For this work, we are 

very interested in the scaled derivative of the total flux 
spectrum, defined as 
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Because µ is a dummy variable in the integration and is 
independent of ν, we can write the total angle-integrated 
radiation spectrum for photons of both polarizations, 
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and 
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Jν(q) is Auger function. Because both H and C are slow 
functions of ν, the spectral derivative is dominated by the 
sinc function SN(ν), with its peak at the nominal harmonic 
energies. This feature can be clearly seen in Fig. 1. 
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Figure 1: Calculated derivative spectra for the APS 
diagnostics undulator (N=198). All spectra were 
normalized to have the same maximum value. The dotted 
line is for K = 0.01, the dashed line for K = 0.1, the dash-
dot line for K = 0.5, and the long-dashed line for K = 1.0. 
The solid line (top) is the sinc function. Its center peak 
has an rms width of 0.36/nN. 

2.3 Electron Beam With Finite Energy Spread 
Let us consider electron beams with Gaussian energy 
distribution, 
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where the relative momentum change is defined as 

0 0/ /E Eδ γ γ= ∆ = ∆ , and E0 is the centroid energy. Using 

the new variables defined in Eq. (7) and the following  
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we have Q Q G �0 1 2� �. Convolution of Eq. (15) and (6) 

leads to the angle-integrated photon flux. After dropping 
higher orders of δ, we obtain the derivative of the 
spectrum in the form of a convolution integral, 
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where 

0/ nωδ ω ω ν= ∆ = ∆  is the relative photon energy 

deviation. 

3 BEAM ENERGY MEASUREMENTS  
Figure 2 shows the schematics of an experimental 

setup for measuring angle-integrated flux spectrum. A 
rotating crystal selects the x-ray energy according to 
Bragg’s law, θλ sin2d= , where θ is the incidence angle 
of the x-ray beam. The reflected x-rays are collected by 
an integrating detector. The relative photon energy change 
is given by 

0 0 0/ / / tanω ω λ λ θ θ∆ = −∆ = −∆ , where θ0 is 

the angle at the center of the flux jump. Converting it to 
the equivalent electron energy deviation, we have  

0 2 2 tan

γ ω θ
γ ω θ
∆ ∆ ∆= = − .  (17) 

The experimentally measured flux curve, F(θ), can be 
differentiated numerically to obtain the scaled spectral 
derivative. 
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Figure 2: Schematic of the spectrum measurement of 
angle-integrated flux. The monochromator crystal uses 
Laue reflection with a Bragg angle θ, and the detector is 
supported by a second rotary stage following 2θ.  

3.1 Electron Beam Energy Spread Measurement  
The width obtained in fitting the experimentally 

measured spectral derivative to a Gaussian peak is a sum, 
2 2 2

exp resδσ σ σ= + .  (18) 

where the total resolution is the sum of contributions from 
various sources 

2 2 2 2 2
res divund B xtalσ σ σ σ σ∆= + + + .  (19) 

Table 1 explains the meaning of these terms and lists their 
typical values at the APS storage ring. The ideal 
resolution dominates in the case of the APS undulator. It 
is also significant that the electron beam size has no 
impact on the energy measurement. 
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The contribution of the undulator field error is difficult 
to express in closed forms. For nearly perfect undulators, 
the trajectory error does not affect the angle-integrated 
spectrum to the first order, so we estimate,  

0.18 0.18
B n

nN N
σ σ σ∆ ∆ ∆≈ = ,       (20) 

where σ∆ and σ∆n are the rms phase errors of the 
fundamental and n-th harmonic. 

Table 1 Sources of Experimental Error / Resolution  

Expression Source Typical* 
values (10-3) 

0.18
und

nN
σ ≈  Ideal resolution: SINC 

function central peak  0.9 

0.18
B

N
σ σ∆ ∆≈  Undulator field error < 0.08 

6 tan
xtal

xtal

θσ
θ

∆
≈  

Darwin width, mosaic 
angle and thermal 
distortion of the crystal 

< 0.06 

'

2 tan
x

div

σσ
θ

≈  Beam divergence / 
angular motion  

< 0.1 (x) 
< 0.02 (y) 

3.2 Absolute Electron Beam Energy Measurement  
Equation (11) indicates that the spectral derivative 

peaks very nearly at the nominal harmonic energy. This 
can be used to estimate the beam energy with the center 
angle obtained in fitting the experimentally measured 
spectral derivative, θ0. 
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The error in the beam energy can therefore be given by 
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The errors from the undulator can be minimized when 
running at low power (K). Errors from the monochromator 
crystal can be minimized when a silicon crystal is used at 
cryogenic temperatures [4]. The difficulty of measuring 
the absolute value of the angle θ can be overcome by 
scanning the monochromator through spectral peaks at 
both negative and positive angles and taking the 
difference as 2θ0 (Fig. 3). Table 2 lists the typical values 
at the APS storage ring. Under these conditions, an 
accuracy of 10-4 can be obtained for the absolute energy 
measurement. 

Turn-by-turn energy measurements can be performed 
when flux at four crystal angles (θ1 though θ4 in Fig. 3) is 
obtained simultaneously with Laue crystal arrays.  

ANGLE-INTEGRATED SPECTRA OF APS DIAGNOSTIC UNDULATOR
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Figure 3: Calculated angle-integrated spectrum of the 
APS diagnostics undulator as a function of Bragg angle 
of Si(220). The figure shows the use of a negative angle 
to calibrate the absolute angle offset.  

Table 2 Sources of Experimental Error / Resolution  

Expression Source Typical* 
values (10-3) 

u

u

λ
λ

∆  Error in undulator period 
length 0.11 

2 K
K

K

∆  Undulator field 
uncertainty  < 0.03 

d
T

d
α∆ ≈ ∆  Thermal expansion of the 

crystal lattice  < 0.01 

0

0

θ
θ
∆  Angle measurement error < 0.05 

* We assume λu=18 mm, ∆λu=2 µm, K = 0.03, ∆K/K 
< 0.03, α ~−0.5×10-6K-1, ∆T~20°K, and ∆θ0 <5 arc-sec. 

4 CONCLUSION 
We proposed to use the angle-integrated undulator 

spectra to measure the centroid and rms spread of the 
electron beam energy. The advantages of this new 
technique are: (1) its calibration is independent of the ring 
lattice parameter, (2) it is not sensitive to the beam 
emittance and other lattice parameters, and (3) a fast turn-
by-turn measurement is feasible. 
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* We assume nN = 200, θ(Si[200]) = 7.21°, σ∆ <5°, ∆θxtal 

<10 arc-sec, σx’ < 25 µrad, and σy’ < 5 µrad. 


