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Abstract 
 A computer model for both electrons and multiple ion 

species in an Electron Cyclotron Resonance Ion Source 
(ECRIS) plasma that is 1D spatially has been developed. 
The non-Maxwellian anisotropic electron-distribution-
function (EDF) is modeled using a 1D axially bounce-
averaged Fokker-Planck code that is 2D in velocity space 
(velocity and pitch angle). ECR heating is treated using a 
quasi-linear rf-diffusion term including relativistic 
detuning and rf pitch-angle scattering. Under typical 
ECRIS conditions, the electrons are very non-collisional 
and magnetically confined. Thus, the ions must follow the 
electron confinement via the electrostatic potential. The 
ion species are assumed to be highly collisionally coupled 
and are treated using a 1D fluid model characterized by a 
single fluid velocity. Ion charge-state-distributions (CSD) 
flowing into the extraction aperture can be calculated and 
used as input to an ion beam extraction code. The 
modeling reproduces several experimentally observed 
characteristics of ECRIS plasmas. 

1 INTRODUCTION 
Optimization of an Electron Cyclotron Resonance Ion 

Source (ECRIS) to produce high currents of high charge 
state ions is typically a trial and error process. A better 
understanding of the physics in the core plasma and the 
ions flowing into the extraction region would aid in 
ECRIS design and optimization. This complex task 
requires consideration of magnetic mirror and multipole 
confinement; rf heating and a resultant non-Maxwellian 
and anisotropic electron-distribution-function (EDF); 
multiple ion atomic species each with its own charge-
state-distribution (CSD); an axially varying electrostatic 
plasma potential, etc. 

Simple zero dimensional (0D) models ignoring some of 
the above can be successful at matching experiment CSDs 
[1,2], but require trial and error guesses at parameters 
such as the electron density, ne, assumed a Maxwellian 
EDF with an electron temperature, Te, etc. A predictive 
model should rely on experimental �knobs� such as 
magnetic field and rf power to calculate the plasma 
parameters and CSD. 

A predictive one-dimensional (1D) �General ECRIS 
Model� (GEM) [3] is under development by FARTECH, 
Inc. to model an ECRIS plasma. GEM is successful in 
predicting several features typical of an ECRIS.  

2 PLASMA MODELING 
GEM is a multi-species 1D code for the modeling of an 
ECRIS. It takes into account both ionization, including 
the excitation-autoionization process in the collision 
cross-sections [4], and charge-exchange. GEM consists of 
two major parts discussed separately below: the 1D 
bounce-averaged Fokker-Planck (FP) modeling of the 
electrons and the 1D fluid modeling of the ions. 

2.1 Electron Fokker-Planck Modeling 
Rather than assuming arbitrary Maxwellian 

temperatures as common in many 0D models, GEM 
calculates the EDF by solving the Fokker-Planck equation 
using the nonlinear multi-species code FPPAC94 [5]. As 
the electrons are quite collisionless, it is appropriate to 
extend the calculations to include 1D effects by bounce-
averaging the Fokker-Planck Coefficients. Bounce-
averaging includes the effects of axial variations in 
plasma parameter profiles by averaging these effects over 
the entire path of an electron �bouncing� back and forth 
inside a magnetic well. GEM uses the bounce-averaging 
routines of BACON11 [6] modified to accept collisions 
with multiple ion species and asymmetric magnetic wells 
such as common in an ECRIS. 

Electron Cyclotron Resonance Heating is treated using 
a quasi-linear rf diffusion coefficient. This coefficient 
includes the effects of relativistic detuning of the 
resonance and rf pitch angle scattering which limits 
confinement by scattering very fast electrons. Bounce-
averaging of the rf coefficients allows the model to take 
into account the axial location and width of the rf 
resonance. The absolute magnitude of the coefficient is 
adjusted to match the total deposited power from the 
model with the experimentally launched power. 

A typical EDF calculated by GEM is shown in Figures 
1 and 2. The ECRIS geometry for this run is based on 
ECR-II [7] at Argonne National Laboratory (ANL) where 
for simplicity a symmetric magnetic field of mirror ratio 
was used. Based on ECR-II runs, a deposited rf power of 
about 540W and a neutral oxygen gas pressure of 7·10-7 
torr were chosen. The EDF is highly non-Maxwellian as 
expected in an ECRIS. It can be seen that the EDF peaks 
with pitch angle at about 65°. Electrons with higher pitch 
angles cannot reach the rf resonance due to their strong 
magnetic trapping.  

Electron density and energy axial profiles can be 
determined by mapping the bounce-averaged EDF to each 
axial position, taking into account the magnetic and 
potential profiles. Figures 3 and 4 show the density and 
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average electron energy profiles, respectively, that 
correspond to the EDF given in Figures 1 and 2. One can 
see that GEM predicts a hot dense plasma core typical of 
an ECRIS. The electron energy peaks just outside the rf 
resonance, similar perhaps to the hot electron ring 
sometimes seen outside the core of an ECRIS. 

 
Figure 1: Typical EDF vs. electron energy. The solid line 

is the fe(v). The dotted line is fe(v)dv, which is an 
indication of the total number of electrons at v. 

 
Figure 2: Typical EDF vs. pitch angle. The peak is located 
at the pitch angle required to just reach the rf resonance. 

2.2 Ion Fluid Modeling 
Unlike the electrons, the ions in an ECRIS are highly 

collisional and a fluid model is appropriate for treating 
them. All ions are assumed to flow at the same ion fluid 
velocity, ui, due to frictional drag from their high 
collisionallity. Each ion of atomic species j and charge q 
is then governed by an ion continuity equation 
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where nj,q is the ion density and Sj,q is the ion source/sink 
term due to ionization and charge-exchange events. A(z) 
is the plasma cross-sectional area of the ion flux tube 
which is inversely proportional to the magnetic field. 
When the ion continuity equations are summed for all 
ions one gets 
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where Se is the total electron source and quasineutrality 
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is assumed. This almost appears to be an electron 
continuity equation, however, ui, should not be confused 
with an electron fluid velocity as the electrons are 
definitely too collisionless to be fluid-like. Boundary 

conditions, either free-flow or flow at the sound speed 
(the Bohm criterion) can be enforced at the device edges. 

 
Figure 3: Typical electron density profile (solid line) and 
total ion density profile (dashed line). Dotted lines show 

location of rf resonance. 

 
Figure 4: Typical average electron energy profile. Dotted 

lines show location of rf resonance. 
GEM solves the above total ion continuity equation for 

the ui that is required to match the Fokker-Planck modeled 
electron density and source terms. This fluid velocity is 
then used in each individual ion continuity equation and 
the ion CSD at each axial location is adjusted accordingly. 

Now the sum of the ion momentum fluid equations  
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can be solved to determine the plasma potential ϕ(z,t). Ti 
is the ion temperature, mj the ion mass and S0

j,q the ion 
source due to ionization/charge-exchange of neutral 
particles (not from other ion charge-states). This profile 
can then be used in the Fokker-Planck electron modeling. 
The procedure is iteratively performed until convergence. 

The 1D ion modeling is further coupled to the 1D 
electron modeling by ambipolarity. The sheath potential 
at the device edge is adjusted to maintain equal ion and 
electron flows to the walls. 

The neutral atoms in the plasma are treated using a 
simple particle balance scheme. The neutral density is 
determined by balancing the neutrals free flowing across 
the borders of each axial cell along with the number of 
neutrals lost to ionization or charge-exchange inside each 
cell. A more complex treatment, such as a Monte-Carlo 
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3D neutral code isn�t justified due to the uncertainties in 
the 3D plasma profiles. The neutral densities outside the 
plasma are estimated from the gas pressure measured as 
close as possible to the plasma chamber. When trying to 
match experimental data, this neutral density must be 
adjusted to account for the measurement location outside 
the plasma chamber and for the presence of many 
impurity partial pressures in a typical ECRIS. 

 
Figure 5: Ion fluid velocity profile (in m/s). Dotted lines 

show location of rf resonance. 

 
Figure 6: Plasma electrostatic potential profile. The model 

predicts a potential well inside the plasma core. Dotted 
lines show location of rf resonance. 

 
Figure 7: GEM predicted CSD (line) peaks at a lower 

charge than experimentally observed (diamond) 
Results of the 1D fluid modeling are presented in 

Figures 5, 6 and 7. The modeling run is the same as 
shown for the electron modeling. Of particular note is the 
hollow potential well in the plasma core predicted by 
GEM. This potential well is believed to be a key feature 
of ECRIS ion confinement. 

As discussed above, the 1D GEM predicts several 
typical ECRIS features that are impossible to determine 
from a 0D model. Unfortunately, the CSD predictions do 
not yet show good agreement with experimental data. 
Figure 7 shows model predictions along with 
experimental data from ECR-I [8] at ANL. Although, of 

the correct order of magnitude, the predicted CSD peaks 
at a lower charge state than experimentally observed. 
Several possible explanations for this discrepancy are 
being investigated: 

• The assumption of a uniform fluid velocity may be 
inaccurate. Separate ion fluid velocities should 
result in higher charge states being more 
potentially confined allowing them more time to 
be ionized to higher charge states.  

• The collision cross-sections used may need to be 
updated to include the most recent data. 

• Uncertainties in the experimental data used, e.g. 
the ECRF power actually deposited in the plasma. 

• The boundary conditions used in the 1D fluid 
model may not be appropriate. 

To compare code predictions for the ion fluxes leaving 
the plasma with Faraday cup data, GEM numerical results 
can be used as initial conditions for an ion extraction code 
such as IGUN (2D) [9] or MICHELLE (3D) [10]. For 
ECRIS extraction studies, plasma sheath calculations have 
been implemented into the MICHELLE code.  

Extraction modeling and experimental data indicates 
that the Faraday cup current CSD is subject to space-
charge effects which distorts the actual CSD of the ions 
flowing out of an ECRIS. To properly benchmark and 
validate GEM, data is needed on the actual parameters 
inside an ECRIS plasma. A measure of the core plasma 
CSD and EDF using, for example soft X-ray 
spectroscopy, would provide data that can be directly 
compared with modeling predictions.  

The authors thank John Petillo for his help this work. 

6 REFERENCES 
[1] G. Shirkov and G. Zschornack, Nuc. Instrum. and 

Meth. in Phys. Res. B 95, 527 (1995). 
[2] V. D. Dougar-Jabon, A. M. Umnov and V. B. Kutner, 

Rev. Sci. Instrum. 67, 1152 (1996). 
[3] D. H. Edgell, J. S. Kim, S. K. Wong, R. C. Pardo and 

R. Vondrasek, Phys. Rev. Special Topics-Accelerators 
and Beams 2, 123502 (1999); D. H. Edgell, J. S. Kim, 
S. K. Wong, R. C. Pardo and R. Vondrasek, Rev. Sci. 
Instrum. 71, 666 (2000) 

[4] M. Arnaud & R. Rothenflug, Astron. Astrophys. 
Suppl. Ser. 60, 425 (1985) 

[5] A. A. Mirin, M. G. McCoy, G. P. Tomaschke, and J. 
Killeen, Comp. Phys. Comm., 81, 403 (1994) 

[6] T. A. Cutler, L. D. Pearlstein and M. E. Rensink, 
LLNL Technical Report # UCRL-52233 (1977); T. D. 
Rognlien, LLNL Report # UCID-20474 (1985) 

[7] M. Schlapp, R. C. Pardo, R. C. Vondrasek, J. Szczech, 
P. J. Bilquist, J. Vieregg, Z. Q. Xie, C. M. Lyneis and 
R. Harkewicz, Rev. Sci. Instrum. 69, 631 (1998). 

[8] D. P. Moehs, R. Vondrasek, R. C. Pardo, and D. Xie, 
Rev. Sci. Instrum. 71, 761 (2000). 

[9] R. Becker and W. B. Herrmannsfeld, Rev. Sci. 
Instrum. 63, 2756 (1992). 

[10] J. Petillo, RPAH090 in these proceedings. 

2137

Proceedings of the 2001 Particle Accelerator Conference, Chicago


