Proceedings of the 2001 Particle Accelerator Conference, Chicago

MACROSCOPIC FLUID APPROACH TO THE COHERENT
BEAM-BEAM INTERACTION

Stephan |. Tzenov and Ronald C. Davidson
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA

Abstract

Building on the Radon transform of the Vlasov-Poisson
equations, a macroscopic fluid model for the coherent
beam-beam interaction has been developed. It is shown
that the Vlasov equation, expressed in action-angle vari-
ables, can be reduced to a closed set of hydrodynamic
(fluid) equations for the beam density and current vel ocity.
The linearized one-dimensional equations have been anal-
ysed, and explicit expressions for the coherent beam-beam
tuneshifts are presented.

1 INTRODUCTION

In a colliding-beam storage ring device, the evolution of
each beam is strongly affected by the electromagnetic force
produced by the counter-propagating beam. A basic feature
of this coherent interaction is linear mode coupling, also
known as the coherent beam-beam resonance.

The problem of coherent beam-beam resonances in one
dimension (the vertical direction) was first studied by Chao
and Ruth [1] by solving the linearized Vlasov-Poisson
equations. They considered the simplest case of asymmet-
ric collider and obtained explicit expressions for the reso-
nance stopbands. The purpose of the present paper is to
extend their results to the case of an asymmetric circular
collider.

Based on the Radon transform 2, 3], amacroscopic fluid
model of the coherent beam-beam interaction is devel oped.
Thelinearized macroscopic fluid equations are then solved,
and a generalized stability criterion for a coherent beam-
beam resonance of arbitrary order is derived.

2 THE RADON TRANSFORM

We begin with the one-dimensional Vlasov-Poisson
equations describing the nonlinear evolution of the beams
in the vertical (y) direction
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Here, (k = 1,2) labels the beam, f(y, p; 0) is the distri-
bution function, € is the azimuthal angle, v, isthe betatron
tunein vertica direction, R isthe mean machineradius, r.
is the classical electron radius, N 5 isthe total number of
particlesin either beam, V;,(y; 0) is the normalized beam-
beam potential, 3, is the vertical beta-function at the in-
teraction point, and L ;... isthe horizontal dimension of the
beam ribbon [1]. The one-dimensional Poisson equation
(2.3) can bereadily solved to give
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Transforming to action-angle variables (
Egs. (2.1) and (2.2) intheform
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J, ©), we rewrite
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Next we perform the Radon transform defined as[2, 3]
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and obtain the hydrodynamic equations
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where g, is the Radon image of the distribution function
fx. Theintegration variable ¢ is regarded as a Lagrange
variable, that keeps track of the detailed information about
theaction J. It us usually determined by the condition that
the distribution function f, be equal to a specified distribu-
tion [3], fromwhich J = vy (¢, &; 0). Taking into account
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Eq. (2.10), the beam density can be further eliminated from
Eq. (2.11), which yields the result
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It isimportant to note that Eqs. (2.10) and (2.12) comprise
aclosed set, that is (as can be easily checked) equationsfor
higher moments can be reduced to these two equations.

At this point we make the important conjecture that Egs.
(2.10) and (2.12) possess a stationary solution that is inde-
pendent of the angle variable . Without loss of generality
we choose

o

= ¢ = const, g,(co) = G(&) = const.

(2.14)

3 SOLUTION OF THE LINEARIZED
EQUATIONS

Expressing o, = g,(go) + g,(f) and v, = v,(go) + v,(cl), the

linearized hydrodynamic egquations can be written as
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Here vy, istheincoherently perturbed betatron tune, defined
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where the angular bracket implies an average over the an-
gle variable. Next we determine the derivatives of the first-
order beam-beam potential V,fl) entering the linearized hy-
drodynamic equations corresponding to

(3.3)
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Finally, we obtain the linearized equation for the beam den-
sity
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In order to solve Eq. (3.6), we note that the function o,
may be represented as

(3.6)
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Assuming thefunction G(¢) in Eq. (2.14) to be of the form

¢
)

2moy,

o\, 6:60) = S SLRy (0,6 0). 3.7)

G(§) =

(39)

for small vertical beam sizes o, we obtain
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If R, does not depend on the Lagrange variable &, making
use of EQ. (3.9), we rewrite Eq. (3.6) as
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Note that this approximationis valid if and only if the per-
turbed betatron tunes in Eq. (3.3) do not depend on &,
which in general is not the case. This leads to an effect
similar to Landau damping, well-known in plasma physics,
which we shall neglect in what follows. Fourier transform-
ing Eq. (3.10) yields
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In order to determine the infinite matrix M, we utilize the
integral representation of the sign-function
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Asaresult, we obtain
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Here 7,,(z) isthe Bessel function of thefirst kind of order
n.

4 COHERENT BEAM-BEAM
RESONANCES

Equation (3.12) can beformally solved to obtain the one-
turn transfer map

Ri(n; 27) = exp(—2minDy,)

~ A 0 ~
X |Re(m;0) + 55 D MumRai(m;0)|.  (41)

m=—oo

Consider now acoherent beam-beam resonance of the form

711;1 + TLQDQ =S+ A, (42)

where n1, no and s are integers, and A is the resonance
detuning. Retaining only the +n; and the +n, elementsin
M, the transformation matrix of the coupled map egua-

tions (4.1) can be expressed as
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The eigenvalues of the transfer matrix defined in Eq. (4.3)
are the roots of the secular equation
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we obtain the stability criterion
|cos 1Py cos1hg + Asinby siniha| < 1. (4.10)

To conclude this section we note that in the case of
a symmetric collider the stopbands calculated from Eq.
(4.10) coincide with the results obtained by Chao and Ruth
[see Eq. (31) of Ref. 1].

5 CONCLUDING REMARKS

Based on the Radon transform we have developed a
macroscopic fluid model of the coherent beam-beam inter-
action. The linearized hydrodynamic equations are further
solved and a stability criterion for coherent beam-beamres-
onances have been found in closed form.
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