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Abstract

Building on the Radon transform of the Vlasov-Poisson
equations, a macroscopic fluid model for the coherent
beam-beam interaction has been developed. It is shown
that the Vlasov equation, expressed in action-angle vari-
ables, can be reduced to a closed set of hydrodynamic
(fluid) equations for the beam density and current velocity.
The linearized one-dimensional equations have been anal-
ysed, and explicit expressions for the coherent beam-beam
tuneshifts are presented.

1 INTRODUCTION

In a colliding-beam storage ring device, the evolution of
each beam is strongly affected by the electromagnetic force
produced by the counter-propagating beam. A basic feature
of this coherent interaction is linear mode coupling, also
known as the coherent beam-beam resonance.

The problem of coherent beam-beam resonances in one
dimension (the vertical direction) was first studied by Chao
and Ruth [1] by solving the linearized Vlasov-Poisson
equations. They considered the simplest case of a symmet-
ric collider and obtained explicit expressions for the reso-
nance stopbands. The purpose of the present paper is to
extend their results to the case of an asymmetric circular
collider.

Based on the Radon transform [2, 3], a macroscopic fluid
model of the coherent beam-beam interaction is developed.
The linearized macroscopic fluid equations are then solved,
and a generalized stability criterion for a coherent beam-
beam resonance of arbitrary order is derived.

2 THE RADON TRANSFORM

We begin with the one-dimensional Vlasov-Poisson
equations describing the nonlinear evolution of the beams
in the vertical (y) direction

∂fk
∂θ

+ νkp
∂fk
∂y

− ∂Hk

∂y

∂fk
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= 0, (2.1)

Hk =
νk
2

(
p2 + y2

)
+ λkδp(θ)Vk(y; θ), (2.2)

∂2Vk
∂y2

= 4π
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Here, (k = 1, 2) labels the beam, fk(y, p; θ) is the distri-
bution function, θ is the azimuthal angle, νk is the betatron
tune in vertical direction, R is the mean machine radius, re
is the classical electron radius, N1,2 is the total number of
particles in either beam, Vk(y; θ) is the normalized beam-
beam potential, β∗

ky is the vertical beta-function at the in-
teraction point, and Lkx is the horizontal dimension of the
beam ribbon [1]. The one-dimensional Poisson equation
(2.3) can be readily solved to give

Vk(y; θ) = 2π
∫

dy′dp′f3−k(y′, p′; θ)|y − y′|. (2.5)

Transforming to action-angle variables (J, ϕ), we rewrite
Eqs. (2.1) and (2.2) in the form
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∂
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fk

]
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∂Vk
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fk

)
= 0, (2.6)

Hk = νkJ + λkδp(θ)Vk(ϕ, J ; θ), (2.7)

where

Vk(ϕ, J ; θ) = 2π
∫

dϕ′dJ ′f3−k(ϕ′, J ′; θ)

×
∣∣∣√2J cosϕ−

√
2J ′ cosϕ′

∣∣∣. (2.8)

Next we perform the Radon transform defined as [2, 3]

fk(ϕ, J ; θ) =
∫

dξ�k(ϕ, ξ; θ)δ[J − vk(ϕ, ξ; θ)], (2.9)

and obtain the hydrodynamic equations

∂�k
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+
∂

∂ϕ

[(
νk + λkδp(θ)

∂Vk
∂vk

)
�k

]
= 0, (2.10)

∂(�kvk)
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+
∂

∂ϕ

[(
νk + λkδp(θ)
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∂vk

)
�kvk

]
+λkδp(θ)

∂Vk
∂ϕ

�k = 0, (2.11)

where �k is the Radon image of the distribution function
fk. The integration variable ξ is regarded as a Lagrange
variable, that keeps track of the detailed information about
the action J . It us usually determined by the condition that
the distribution function fk be equal to a specified distribu-
tion [3], from which J = vk(ϕ, ξ; θ). Taking into account
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Eq. (2.10), the beam density can be further eliminated from
Eq. (2.11), which yields the result

∂vk
∂θ

+
(
νk + λkδp(θ)

∂Vk
∂vk

)
∂vk
∂ϕ

+ λkδp(θ)
∂Vk
∂ϕ

= 0,

(2.12)
where

Vk(ϕ, vk; θ) = 2
√

2π
∫

dϕ′dξ′�3−k(ϕ′, ξ′; θ)

×
∣∣∣√vk(ϕ, ξ; θ) cosϕ−

√
v3−k(ϕ′, ξ′; θ) cosϕ′

∣∣∣. (2.13)

It is important to note that Eqs. (2.10) and (2.12) comprise
a closed set, that is (as can be easily checked) equations for
higher moments can be reduced to these two equations.

At this point we make the important conjecture that Eqs.
(2.10) and (2.12) possess a stationary solution that is inde-
pendent of the angle variable ϕ. Without loss of generality
we choose

v
(0)
k = ξ = const, �

(0)
k = G(ξ) = const.

(2.14)

3 SOLUTION OF THE LINEARIZED
EQUATIONS

Expressing �k = �
(0)
k + �

(1)
k and vk = v

(0)
k + v

(1)
k , the

linearized hydrodynamic equations can be written as
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k

∂θ
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(1)
k
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(0)
k

∂2V
(1)
k
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∂v
(1)
k

∂θ
+ ν̃k

∂v
(1)
k
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+ λkδp(θ)

∂V
(1)
k

∂ϕ
= 0. (3.2)

Here ν̃k is the incoherently perturbed betatron tune, defined
by

ν̃k = νk +
λk
2π

〈
∂V

(0)
k

∂vk

〉
ϕ

, (3.3)

where the angular bracket implies an average over the an-
gle variable. Next we determine the derivatives of the first-
order beam-beam potential V (1)

k entering the linearized hy-
drodynamic equations corresponding to

∂V
(1)
k

∂ϕ
= −2π

√
2ξ sinϕ

∫
dϕ′dξ′�(1)

3−k(ϕ
′, ξ′; θ)

×sgn
(√
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)
, (3.4)
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(1)
k
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√
2
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∫

dϕ′dξ′�(1)
3−k(ϕ
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×sgn
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√
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)
. (3.5)

Finally, we obtain the linearized equation for the beam den-
sity

∂�
(1)
k

∂θ
+ ν̃k
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(1)
k
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2
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(√

ξ cosϕ−
√
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)
= 0. (3.6)

In order to solve Eq. (3.6), we note that the function � (1)
k

may be represented as

�
(1)
k (ϕ, ξ; θ) =

�
(0)
k (ξ)√
ξ

Rk(ϕ, ξ; θ). (3.7)

Assuming the functionG(ξ) in Eq. (2.14) to be of the form

G(ξ) =
1
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k
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k

)
(3.8)

for small vertical beam sizes σk, we obtain
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�
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δ
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√
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)
. (3.9)

If Rk does not depend on the Lagrange variable ξ, making
use of Eq. (3.9), we rewrite Eq. (3.6) as

∂Rk

∂θ
+ ν̃k

∂Rk

∂ϕ
− πλ̃kδp(θ) sinϕ

×
∫

dϕ′R3−k(ϕ′; θ)sgn(cosϕ− cosϕ′) = 0, (3.10)

where

λ̃k =

√
2
π
λk

σk
σ3−kΣ

, Σ =
√
σ2
k + σ2

3−k.

(3.11)
Note that this approximation is valid if and only if the per-
turbed betatron tunes in Eq. (3.3) do not depend on ξ,
which in general is not the case. This leads to an effect
similar to Landau damping, well-known in plasma physics,
which we shall neglect in what follows. Fourier transform-
ing Eq. (3.10) yields

∂R̃k(n)
∂θ

+ inν̃kR̃k(n)

− λ̃k
2
δp(θ)

∞∑
m=−∞

MnmR̃3−k(m) = 0, (3.12)

where

R̃k(n; θ) =
1
2π

2π∫
0

dϕRk(ϕ; θ) exp(−inϕ), (3.13)
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Mnm =

2π∫
0

dϕ

2π∫
0

dϕ′e−inϕ sinϕeimϕ
′

×sgn(cosϕ− cosϕ′). (3.14)

In order to determine the infinite matrix M, we utilize the
integral representation of the sign-function

sgn(x) =
1
πi

∞∫
−∞

dλ

λ
exp(iλx). (3.15)

As a result, we obtain

Mnm = 4πnin−m+1

∞∫
−∞

dλ

λ2
Jm(λ)Jn(λ)

=
{ − 32in

[(n+m)2−1][(n−m)2−1] , for n+m = even,
0, for n+m = odd,

(3.16)

Mmn = (−1)m−nm
n
Mnm, (3.17)

where use has been made of

eiz cosϕ =
∞∑

n=−∞
inJn(z)einϕ,

Jn−1(z) + Jn+1(z) =
2n
z
Jn(z). (3.18)

Here Jn(z) is the Bessel function of the first kind of order
n.

4 COHERENT BEAM-BEAM
RESONANCES

Equation (3.12) can be formally solved to obtain the one-
turn transfer map

R̃k(n; 2π) = exp(−2πinν̃k)

×
[
R̃k(n; 0) +

λ̃k
2

∞∑
m=−∞

MnmR̃3−k(m; 0)

]
. (4.1)

Consider now a coherent beam-beam resonance of the form

n1ν̃1 + n2ν̃2 = s+ ∆, (4.2)

where n1, n2 and s are integers, and ∆ is the resonance
detuning. Retaining only the ±n1 and the ±n2 elements in
Mnm, the transformation matrix of the coupled map equa-
tions (4.1) can be expressed as

e−iψ1 0 α1e
−iψ1 α1e

−iψ1

0 eiψ1 −α1e
iψ1 −α1e

iψ1

α2e
−iψ2 α2e

−iψ2 e−iψ2 0
−α2e

iψ2 −α2e
iψ2 0 eiψ2

, (4.3)

where

ψk = 2πnkν̃k, α1 =
λ̃1

2
Mn1n2 , (4.4)

α2 =
λ̃2

2
(−1)n2−n1

n2

n1
Mn1n2 . (4.5)

The eigenvalues of the transfer matrix defined in Eq. (4.3)
are the roots of the secular equation(

λ2 − 2λ cosψ1 + 1
)(
λ2 − 2λ cosψ2 + 1

)
+

+2α1α2[cos (ψ1 − ψ2) − cos (ψ1 + ψ2)]λ2 = 0. (4.6)

Casting Eq. (4.6) in the form(
λ2 − 2c1λ+ 1

)(
λ2 − 2c2λ+ 1

)
= 0, (4.7)

where

c1,2 =
cosψ1 + cosψ2

2
±

±1
2

√
(cosψ1 − cosψ2)

2 − 4A sinψ1 sinψ2, (4.8)

A =
λ̃1λ̃2

4
(−1)n2−n1

n2

n1
M2

n1n2
, (4.9)

we obtain the stability criterion

|cosψ1 cosψ2 +A sinψ1 sinψ2| < 1. (4.10)

To conclude this section we note that in the case of
a symmetric collider the stopbands calculated from Eq.
(4.10) coincide with the results obtained by Chao and Ruth
[see Eq. (31) of Ref. 1].

5 CONCLUDING REMARKS

Based on the Radon transform we have developed a
macroscopic fluid model of the coherent beam-beam inter-
action. The linearized hydrodynamic equations are further
solved and a stability criterion for coherent beam-beam res-
onances have been found in closed form.
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