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Abstract
 Results of integration of the Lorentz-Dirac equation

for electron motion in the field of intensive light wave are
given in this work. Diagrams and parameters, which
characterise the periodic motion of a relativistic electron,
are shown. Formulas of the spectral-angular distribution
of the electromagnetic field irradiated by a relativistic
electron, moving towards electromagnetic wave, were
obtained.

1 INTRODUCTION
In [1] the Dirac-Lorentz equation for motion of a

relativistic electron in the field of travelling linearly
polarized plane light wave was integrated. The
bremsstrahlung force produced by the electron radiation
was taking into account. It was shown, that the
bremsstrahlung force results in an appearance of
decrement. However, under some conditions the periodic
motion of a radiating electron is possible.

In the present work approximate conditions of the
existence of periodic motion of a radiating electron are
analyzed. Diagrams of electron periodic motion were
calculated without taking into account the radiation.
Formulas of spectral-angular distribution of
electromagnetic radiation intensity for an electron, which
is moving periodically in a wave field, were obtained.

2 MOTION EQUATION
The Dirac-Lorentz equation of electron motion in the

electromagnetic theory [2] can be written as

RLm
dt

d
FFv += , (1)

 
( )

�
�

�

�

�
�

Y
�� P

F

PP =−= ββ
 

is the rest mass of an

electron, c is the light velocity, v is the vector of
 
 electron

velocity, FL is the Lorentz force, FR is the bremsstrahlung

force.
It could be shown [1] that when FR = 0 in the field of

plane electromagnetic wave the integral of motion takes
place:
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where F
[o

Y=β , vx is the velocity projection onto the

x-axes, "0" designates a value at the initial time instant.
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H
=  is the radius of electron, νλ F=  is

the light wavelength, Bm00 =µ , k and i are unit vectors
of the z-axes and x-axes, respectively.
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where n is the normal to the wave front, r is a radius-
vector, δ is the phase initial value. E, H are vectors of
electric and magnetic fields, respectively.
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3 PERIODIC SOLUTION
It could be shown that Eq. (3) under some conditions

has a periodic solution. Approximate conditions for
electron periodic motion without taking into account
bremsstrahlung force (FR ≡0) are reduced to following
expressions
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where α is the angle between initial directions of  v and i.
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Eq.(6) is the condition of electron periodic motion
with the period ν--1 on z. Eq.(7) is the condition of
periodicity on time. It was obtained from the requirement
that, when electron passed along x-axis the distance equal

to 1
1

−νa , it came to the same wave phase. The numerical
calculations have shown, that Eq.(7) is the result of
Eq.(6). To obtain the spectral - angular distribution of
radiation intensity of electron moving in the xz plane, we
calculate electric field components in the wave zone [2]:
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( ) 0=lwyε
yzx εεε ,,  are the projections of a radiating vector of

electrical component.
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R is the distance from an electron to the point of
observation, ϕ is the angle between unit vector of x-axis i
and vector, directed from the coordinate origin to the

point of observation. 



 += −

c
aT 11 1ν  is the period of

electron motion on the trajectory, Tw π2= .
Using the given formulas, we can obtain fundamental

frequencies of the electromagnetic field radiation in the
point of observation:
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l is the number of radiation harmonic.
The formula for l (whole number) puts a requirement

on a relation between parameters of wave and particle,
and ensures a linear spectrum of radiation, typical under a
periodic electron motion on time.

During the calculation Eq.(12) the small oscillations x
and z were not taken into account. Small x and z will give
higher radiation harmonics but very small in comparison
with fundamental harmonics of radiation.

The known formula of maximum frequency of

Compton scattering for εz follows from Eq.(12):

νγ 2
1 4≈f (13)

when 2
0,, cmW=== γπϕπα , W is the electron

energy.
The formula (13) is obtained at limitation on intensity

of a plane wave Ea:
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For example, at W = 50 MeV, ν = 3*1014 Hz Ea should

be less than magnitude 8102 ∗π  V/m.
From these formulas the important result follows:

with increasing of the incident wave intensity Ea the
frequency of electron radiation decreases and tends to
frequency of the incident wave at very large values. It is
connected with decreasing of velocity of electron, which
oscillates in a wave field towards the observer. So, at a1=0
the electron stops to move along the x-axis and Doppler
effect disappears. The electron reradiates the incident
wave.

Figs. 1-3 show the trajectories of an electron with
energy 50 MeV in the field of a travelling wave for
typical cases: ν = 3*1014 Hz, ϕ = π. 1) Ea = 108 V/m, α=π-
3*10-7, δ=1,3; f1=1,2*1019 Hz; 2) Ea = 5*1014 V/m, α=π-
10-2, δ=0,0064, f1=9,93*1014 Hz; 3) Ea = 9,1*1014 V/m,
α=π-10-2, δ=0,0035, f1=3*1014 Hz.
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Figure 1

Figure 2
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 Figure 3
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