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Abstract

We develop weighted macro–particle tracking and the
Perron–Frobenius operator technique for simulating the
time evolution of two beams coupled via the beam–beam
interaction. Theπ- and σ–modes, with and without a
sextupole perturbation, are studied based on the Vlasov-
Poisson system. Extending standard averaging formalism
to maps with a small collective force, we derive an approx-
imation to the “kick-rotate” model of our simulation. This
eliminates the delta function smoothing in the Vlasov equa-
tion, common in many theoretical approaches. Action den-
sities are quasi-equilibria, consistent with simulation, and
linearization leads to uncoupled Fourier modes and third–
kind integral equations. Extensions to 2–d.o.f. and a flexi-
ble general purpose code are being developed.

1 MODEL AND ANALYSIS

1.1 The Kick-Rotate Model

Let ψn(x) andψ∗
n(x), x = (q, p)T, denote the phase

space densities of the two counter-rotating beams just be-
fore the IP at turnn. Then the evolution of a particle in the
unstarred beam is given by

xn+1 = R[xn + ξ (0, 1)T(G ∗ ψ∗
n)(xn)] . (1)

HereR is rotation thru an angleµ = 2πQ (α = 0 andβ =
1) and(G ∗ψ)(x) :=

∫
R2 G(q− q′)ψ(x′)dx′, for response

functionG. The evolution law for the starred beam is given
by (1) withψ∗

n replaced byψn. The transformation (1) is
symplectic soψn+1(xn+1) = ψn(xn). Defining “angle”-
action variables,xn =:

√
2Jn(cosαn,− sinαn)T, where

αn = nµ− Θn, the evolution law becomes

Θn+1 = Θn + ξA
1√
2Jn

cosαn +O(ξ2)

Jn+1 = Jn − ξA
√

2Jn sinαn +O(ξ2) , (2)

whereA(nµ,Θn, Jn, ; Ψ∗
n) =

∫
C GΨ∗

ndΘ
′dJ ′ andC :=

[0, 2π) × [0,∞]. HereG = G(
√

2Jn cos(nµ − Θn) −√
2J ′ cos(nµ − Θ′)) andΨ∗

n(Θ, J) = ψ∗
n(
√

2J cos(nµ −
Θ),−√

2J sin(nµ− Θ)).

1.2 Map–Averaging

Equations (2) are in a standard form for averaging as
(Θn, Jn) andΨ∗

n are slowly varying for smallξ. The av-
eraged equations are obtained by dropping theO(ξ 2) term
and averaging the rhs overn holding the slowly varying

quantities fixed. We writeΘn+1 = Θn + ξk1(Θn, Jn; Ψ∗
n)

and Jn+1 = Jn − ξk2(Θn, Jn; Ψ∗
n). Inverting these

throughO(ξ) gives the averaged evolution law for the den-
sities:

Ψn+1(Θ, J) =
Ψn(Θ − ξk1(Θ, J ; Ψ∗

n), J + ξk2(Θ, J ; Ψ∗
n)) (3)

and a similar equation for the starred beam. Equation (3),
with the corresponding equation for the starred beam, is
our basic model. In the CR model [1]G(q) = sgn(q)
where sgn is the signum function. The Birkhoff ergodic
theorem gives the average ofsin(nµ−θ)sgn(cos(nµ−θ))
equals thet−average ofsin(t)sgn(cos(t)) which is zero
and 2/π if sin is replaced bycos, for almost all θ if
µ/2π is irrational. Thuskj(Θ, J ; Ψ) =

∫
C Kj(J, J ′,Θ −

Θ′)Ψ(Θ′, J ′)dΘ′dJ ′ whereK1 = (2/π)∂JD andK2 =
(2/π)∂ΘD for D =

√
2J + 2J ′ − 4

√
JJ ′ cosΘ.

If Ψ0 andΨ∗
0 depend only onJ thenΨn(Θ, J) = Ψ0(J)

andΨ∗
n(Θ, J) = Ψ∗

0(J). This follows from the fact that
k2(Θ, J ; Ψ(J)) = 0 sinceK2 is an odd function ofΘ.
Thus functions only ofJ are equilibria for the averaged
model and thus quasi-equilibria for (1).

Fig. 1 shows the action density for about 100n in the
interval from 0 to217 for two cases based on a PF simu-
lation. In the first case (red crosses) the initial density is
a function of the action alone and to the eye there is no
change. In the second case (green X-es) the offset of both
beams (±1σ0) leads to aΘ dependence and we see the ac-
tion density evolves. Thusξ = 0.003 is within the averag-
ing approximation on this time interval.
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Figure 1: The action density
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1.3 The Linearized Equations

Here we study the behavior of solutions of (3) in
an ε-neighborhood of an equilibrium, thus we write
Ψn(Θ, J) = Ψe(J) + εFn(Θ, J) and the correspond-
ing equation for the starred beam. Plugging into
(3) and dropping higher order terms yieldsFn+1 −
Fn = ξ[Ψ′

e(J)k2(Θ, J ;F ∗
n) − ∂ΘFn(Θ, J)k1(Θ, J ; Ψe)].

Clearly, ω(J) := k1(Θ, J ; Ψe) is independent ofΘ and
is the tune shift in the weak-strong case where the strong
beam has densityΨe. DefiningH := F ± F ∗, we obtain
our basic integro-difference equations:

Hn+1(Θ, J) −Hn(Θ, J) = −ξω(J)∂ΘHn(Θ, J) ±
ξΨ′

e(J)
∫

C

K(J, J ′,Θ − Θ′)Hn(Θ′, J ′)dΘ′dJ ′ , (4)

for theσ andπ equations respectively.
Because of the convolution structure of (4), the Fourier

coefficients hn,k(J) of Hn(·, J) are uncoupled and
evolve byhn+1,k(J) − hn,k(J) = ξ[±ikω(J)hn,k(J) +
Ψ′

e(J)
∫ ∞
0 Kk(J, J ′)hn,k(J ′)dJ ′], whereKk/2π is the

kth Fourier coefficient ofK(J, J ′, ·). To analyze the
stability, we note that the equation for the Fourier
modes is equivalent to∂th(J, t) = ξ[±ikω(J)h(J, t) +
Ψ′

e(J)
∫ ∞
0

Kk(J, J ′)h(J ′, t)dJ ′] + O(ξ2). Taking the
Laplace transform gives

[s∓ ikξω(J)]h̃(J, s) =

ξΨ′
e(J)

∫ ∞

0

Kk(J, J ′)h̃(J ′, s)dJ ′ + h(J, 0) . (5)

Equation (5) is a nonhomogeneous integral equation of the
third kind. An identical homogeneous equation is obtained
from the ansatzhn,k(J) = anφk(J, a). We are presently
analyzing these equations and are in the process of devel-
oping a weakly nonlinear theory to see coupling of Fourier
modes.

2 SIMULATIONS

The Perron–Frobenius (PF) and weighted macro–
particle tracking (WMPT) methods have been devel-
oped. Both are based on the evolution lawψn+1(x) =
ψn(T−1(x;ψ∗

n)) given a symplectic one turn map (OTM)
T as in (1).

The PF method [2] directly applies this evolution law
on a square grid{xij}, 1 ≤ i, j ≤ ng. An approx-
imation ψ̃ij(n) to the densityψn(xij) is obtained by
trackingxij backward toT−1(xij ;ψ∗

n) and interpolating
the density between its neighboring grid points. WMPT
[3] is a method for computing time dependent phase
space averages off via 〈f〉n :=

∫
R2 f(x)ψn(x) d2x =∫

R2 f(Mn(x))ψ0(x) d2x , whereMn is the symplecticn–
turn map containing the collective force. Averages are ap-
proximated by

〈f〉n ≈
{ ∑

ij f(xij)ψ̃ij(n)wij : PF∑
ij f(Mn(xij))ψij(0)wij : WMPT

.

(6)

wherewij are quadrature weights. Note that(G∗ψ∗
n)(q) =

〈G(·, q)〉∗n, but generally its numerical evaluation for off–
grid trajectories has an operations count ofO(n4d

g ) in d
d.o.f. We study the centroids̄qσ,π

n := 〈q〉n ± 〈q〉∗n, as well
as the beam emittance.

2.1 Some Results in one d.o.f.

The beam–beam interaction is a 2–d.o.f. process. How-
ever as a starting point for WMPT we have compared three
different 1–d.o.f. limiting cases [3], a flat beam and motion
in the vertical phase plane (CR) [1], a round beam (AS)
[3], and a flat beam and motion in the horizontal phase
plane (YO) [4]. For CR we found a completely selfcon-
sistent WMPT representation of the collective force with
an operations count of onlyO(N logN),N = n4

g. For AS
& YO the operation count for a completely selfconsistent
WMPT evolution isO(N 2). Thus, we simulated them by
approximating the starred density in (1) by a Gaussian with
the moments calculated from the starred beam so that the
collective force can be evaluated analytically. This approx-
imation (GSA) is often used, [3, 5]. The tune difference
of the modes obtained by FFT from the time discrete data
of q̄σ

n and q̄π
n as well as the separation of the unperturbed

(linear) tunes needed to establish phase mixing (damping)
depends on the limiting case [3].

Fig. 2 shows good agreement between the spectra of the
σ- andπ–mode obtained with PF and WMPT forξ = 0.003
and almost identical linear tunesQ0 =

√
5 − 2 in the

CR limit, giving confidence in the methods. Both beams
were initially standard Gaussians with the unstarred beam
offset by 0.1σ0. The initial density was represented by
a 201×201 square grid over±5σ0 in both directions for
WMPT and the grid for the PF simulation used 241×241
points over±6σ0. The FFT was performed over data from
217 turns. The twoσ–mode spectra (peak on right) are
almost indistinguishable. The twoπ–mode spectra have
nearly the same tune and the continuum due to the single
particle motion is quite pronounced in the WMPT spec-
trum.
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Figure 2: Comparison between PF and WMPT

Fig. 3 shows the emittance growth induced by the inter-
action of a strong sextupole kick in the center of the arc and
a strong beam–beam interaction in the CR limit close to the

2024
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third–integer resonance. Both beams were initially round
and one had a0.1σ0 offset. The sextupole alone (blue
curve) (or withξ up to .006) leads to hardly any emittance
growth. However, when the incoherent tune spread reaches
1/3 (ξ = .009, green) the emittance is significantly in-
creased. Moreover, in the latter case theπ–mode amplitude
is enhanced from about0.1σ0 to about1.5σ0 whereas the
σ–mode amplitude stays small (both not shown). Finally
when the1/3 resonance is well inside the incoherent tune
spread (ξ = 0.012, red), the emittance grows strongly and
the amplitudes of both modes are significantly enhanced
(not shown).
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Figure 3: Emittance growth with beam–beam and Sex-
tupole. PF with 401×401 over±6σ0. σ2

0k2 is the nor-
malized sextupole strength.

2.2 Preliminary results in two d.o.f.

We are modifying the PF and WMPT codes to work in
the 4–D transverse phase space (BBPF2D, BBDeMo2D). Ini-
tial results for PF show that with a514 grid and 4-D cu-
bic interpolation the probability is not satisfactorily con-
served even for a short time. We hope to improve the 4–D
PF performance by higher order local or global (spline) in-
terpolation. WMPT conserves probability by construction,
however it requires attention in order to avoid an operations
count per turn ofO(n8

g). So far we have implemented two
approaches intoBBDeMo2D. The GSA approach which is
clearlyO(n4

g) [5] and the Hybrid Fast Multipole Method
(HFMM) [6] which is also approximatelyO(n4

g). How-
ever, the simulations in 4–D phase space require enormous
amount of (real) memory and computation time and we are
pursuing parallel versions.

Fig. 4 shows preliminary results for the spectra of the
πx- andσx–modes for initially round Gaussian beams with
WMPT over213 turns. The GSA used514 particles and the
selfconsistent HFMM used454 particles, both over a±5σ0

initial grid. Theπx- andσx–modes can clearly be resolved.
Note that the twoσx–mode spectra in this resolution are
almost on top of one another. The modes in they–plane
(not shown) behave the same. The ratioεx,n/εy,n stays
very close to1 ≡ εx,0/εy,0. The deviation from one is less
than 10% which is well below the expected resolution of
these runs. The separation of theπx–mode tune from the

σx–mode tune is(1.4±0.1)ξx in the GSA and(1.5±0.1)ξx

with HFMM. The single particle continuum, visible in the
π–mode spectra, is a little more pronounced with HFMM.
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Figure 4: The spectra of theπx- andσx–mode computed
with BBDeMo2D with 514 particles in the round GSA (red,
green) and with454 particles in the HFMM approach (blue,
purple).

3 OUTLOOK

WMPT and PF show good agreement in the 1 d.o.f cases
thus we are extending both to the more important 2 d.o.f
case and will determine which is more efficient. We will
also continue the analytical work including extensions to
2 d.o.f, development of a spectral theory for the linearized
equations and development of a weakly nonlinear theory to
investigate coupling of Fourier modes within and between
theσ andπ equations. We investigate long term tracking
with the averaged equations which should give a speed up
of O(1/ξ).
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