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Abstract quantities fixed. We writ®,,, 1 = ©,, + £k1(0,,, J,,; U)
nd Jpt1 = Jn — k204, Jn; ¥E).  Inverting these

We develop weighted macro—particle tracking and th . .
Perron—Frobenius operator technique for simulating th .r.°“9h0(5> gives the averaged evolution law for the den-

time evolution of two beams coupled via the beam-bea ties:

interaction. Ther- and o—modes, with and without a

sextupole perturbation, are studied based on the Vlasov- U,11(0,J) =
Poisson system. Extending standard averaging formalism g, (© — ¢k, (0, J; U), J + £ky (O, J; U2)) (3)

to maps with a small collective force, we derive an approx-
imation to the “kick-rotate” model of our simulation. This

eliminates the delta function smoothing in the Vlasov eqU<’;\"’-‘r_]d a similar equathn for the _starred beam. Equation (3,)’
tion, common in many theoretical approaches. Action denVith the corresponding equation for the starred beam, is
sities are quasi-equilibria, consistent with simulation, an§U Pasic model. In the CR model [I}(¢) = sgn(q)

linearization leads to uncoupled Fourier modes and third¥N€re sgn is the signum function. The Birkhoff ergodic
theorem gives the averagesifi(nyu — 0)sgn(cos(nu —6))

kind integral equations. Extensions to 2—d.o.f. and a flexi ) S\

ble general purpose code are being developed. equals thet—average okin(¢)sgn(cos(t)) which is zero
and 2/ if sin is replaced bycos, for almost all ¢ if

p/2m is irrational. Thusk;(©,J;9) = [, K;(J,J,0 —

1 MODEL AND ANALYSIS 0¥ (0, J)de'dJ whereK; = (2/7)0;D and Ky =

1.1 The Kick-Rotate Model (2/m)0eD for D = \/2J + 2J' — 4\/JJ' cos ©.
Let ¢, (z) and(z), = = (gq,p)T, denote the phase If &g and¥§ depend only oy then¥,, (O, J) = ¥y(J)

space densities of the two counter-rotating beams just b80d ¥7,(©,J) = W5(J). This follows from the fact that
fore the IP at turm. Then the evolution of a particle in the k2(©,J; ¥(J)) = 0 since K, is an odd function 0.

unstarred beam is given by Thus functions only of/ are equilibria for the averaged
model and thus quasi-equilibria for (1).
Tpy1 = Rlz, + 6 (0,)T(Gxyy)()] - (D) Fig. 1 shows the action density for about 100n the

interval from 0 to2'7 for two cases based on a PF simu-
lation. In the first case (red crosses) the initial density is
a function of the action alone and to the eye there is no
change. In the second case (green X-es) the offset of both
beams £10) leads to & dependence and we see the ac-
tion density evolves. Thus = 0.003 is within the averag-

ing approximation on this time interval.

HereR is rotation thru an anglg = 27Q (« = 0 andg =

1) and(G *¥)(z) == [z G(q —¢')ip(2")da’, for response
functionG. The evolution law for the starred beam is given
by (1) with v replaced byy,,. The transformation (1) is
symplectic SO, +1(2n+1) = ¥n(x,). Defining “angle™
action variablesg,, =: /2J,,(cos a,,, —sina, )T, where
a, = nu — 0, the evolution law becomes

1

Ony1 = O, +§Amcosan +0(&%) - () CR E:.‘oos / AQ:‘O /| PF
. 9 T round, centered
Jnt1 = Jn—EAV 2, sina, +0(E7%) ,  (2) 0.14 -
0.12
where A(np, Oy, Jp,; ;) = [, GU:dO'd]" andC := ol
0,27) x [0,00]. HereG = G(v/2J, cos(ny — ©,) — 2 0.08
2J" cos(np — ©)) and¥? (0, J) = ¢} (vV2J cos(nu — 0.06 F—Thy
0), —v2J sin(nu — 0)). g' g;
1.2 Map-Averaging % 1 2 3 4 5 6 7 7%
J
Equations (2) are in a standard form for averaging as
(On, Jn) and ¥} are slowly varying for smalf. The av- Figure 1: The action density

eraged equations are obtained by dropping2e?) term
and averaging the rhs over holding the slowly varying
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1.3 The Linearized Equations wherew;; are quadrature weights. Note ttiét«1) ) (q) =
(G(-,q))%, but generally its numerical evaluation for off—

H tudy the behavior of soluti f (3) in\" 4 . . .
ere we study the behavior of solutions of (3) Ingrld trajectories has an operations countaﬁn?]d) in d

an e-neighborhood of an equilibrium, thus we write . ‘
Wn(®7J§J — 0.(J) + an(Gﬁ J) and the correspond- d.o.f. We study t_he centroidg” := (q)» £ (¢), as well
ing equation for the starred beam.  Plugging intd> the beam emittance.
(3) and dropping higher order terms vyields, ; — .
F, = f[\Ifé(J)kQ(@, J;F;:) — 06 F, (0, J)ki (O, J; 1,)]. 2.1 SomeResultsinoned.o.f.
Clearly,w(J) = ki(©,J;¥.) is independent 0® and The beam—beam interaction is a 2—d.o.f. process. How-
is the tune shift in the weak-strong case where the strongyer as a starting point for WMPT we have compared three
beam has density.. Defining H := F' + F'*, we obtain different 1—d.o.f. limiting cases [3], a flat beam and motion
our basic integro-difference equations: in the vertical phase plane (CR) [1], a round beam (AS)
_ [3], and a flat beam and motion in the horizontal phase
Hn1(8,7) = Ha(6, J) = ~6w(J)0e Hn(®, J) £ plane (YO) [4]. For CR we found a completely selfcon-
§\IJ’€(J)/ K(J,J,©0—-0)H,(0' J)ae'd] , (4) sistent WMPT representation of the collective force with
c an operations count of on§(N log N), N = n‘gl. For AS
for theo andr equations respectively. & YO the operation count for a completely selfconsistent
Because of the convolution structure of (4), the FourieWMPT evolution isO(N?). Thus, we simulated them by
coefficients h,, x(J) of H,(-,J) are uncoupled and approximating the starred density in (1) by a Gaussian with
evolve byh,+1 k(J) — hp i (J) = E[xikw(J)hnk(J) + the moments calculated from the starred beam so that the
L) f° Ki(J, J ) hni(J)dJ'], where K /27 is the collective force can be evaluated analytically. This approx-
kth Fourier coefficient ofK(J,J’,-). To analyze the imation (GSA) is often used, [3, 5]. The tune difference
stability, we note that the equation for the Fourierof the modes obtained by FFT from the time discrete data
modes is equivalent t0;h(J,t) = £[+ikw(J)h(J,t) + of g7 andg] as well as the separation of the unperturbed
UL(J) [ Kk(J, J)h(J' t)dJ'] + O(¢£?). Taking the (linear) tunes needed to establish phase mixing (damping)
Laplace transform gives depends on the limiting case [3].
_ ~ Fig. 2 shows good agreement between the spectra of the
o [s F ikgw(T)]h(J, 5) = o- andr—mode obtained with PF and WMPT 9= 0.003
gq}/e(J)/ Ki(J, JI)B(J/,S)dJI + h(J,0) . (5) and almost identical linear tungg, = V5 — 2 in the
0 CR limit, giving confidence in the methods. Both beams
Equation (5) is a nonhomogeneous integral equation of th&ere initially standard Gaussians with the unstarred beam
third kind. An identical homogeneous equation is obtaine@ffsét by 0.1¢. The initial density was represented by
from the ansata,, ,(.J) = a"¢x(J,a). We are presently & 201x201 square grid ovet50 in both directions for
analyzing these equations and are in the process of dev¥{MPT and the grid for the PF simulation used 2441

oping a weakly nonlinear theory to see coupling of FouriePOints overt6a,. The FFT was performed over data from
modes. 217 turns. The twoo—mode spectra (peak on right) are

almost indistinguishable. The two-mode spectra have
2 SIMULATIONS nearly the same tune and the continuum due to the single
particle motion is quite pronounced in the WMPT spec-
The Perron-Frobenius (PF) and weighted macrotrum.
particle tracking (WMPT) methods have been devel-

oped. Both are based on the evolution law(z) = CR/ &=.003 / AQ5x10"°
Yo (T~ (x;4%)) given a symplectic one turn map (OTM) = S R —
T asin (1). s : ‘
The PF method [2] directly applies this evolution law E O Wer o mde \
on a square gridz;;}, 1 < 4,5 < ng. An approx- 5
imation ¢;;(n) to the densityy,(z;;) is obtained by = 0.0t
trackingz;; backward toT~!(z;;;7) and interpolating B 0 001 //
the density between its neighboring grid points. WMPT N R
[3] is a method for computing time dependent phase T o 0001
space averages qf via (f), := fR2 F(@)hn () d2r = 0.226 0.228 0.23 0.232 0.234 0.236
Jgz f (M, ()10 (x) d*x , whereM,, is the symplectia:— [q

turn map containing the collective force. Averages are ap-

. Figure 2: Comparison between PF and WMPT
proximated by

(o ~ > i F(@i)ij (n)wi; : PF Fig. 3 shows the emittance growth induced by the inter-
" > i F(Mn(2ij))hij (0)wi; - WMPT action of a strong sextupole kick in the center of the arc and
(6) astrong beam-beam interaction in the CR limit close to the
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third—integer resonance. Both beams were initially round,—mode tune i1.4+0.1)¢, inthe GSAand1.5+£0.1)¢,
and one had @.10( offset. The sextupole alone (blue with HFMM. The single particle continuum, visible in the
curve) (or withé up to .006) leads to hardly any emittancer—mode spectra, is a little more pronounced with HFMM.
growth. However, when the incoherent tune spread reaches

1/3 (¢ = .009, green) the emittance is significantly in- 4D/ x-p, plane / &= 003 / AQ=5x10"®
creased. Moreover, in the latter casethenode amplitude _ 1 i
is enhanced from aboltlo, to aboutl.50¢ whereas the 5 ;s‘
o—mode amplitude stays small (both not shown). Finally é 0.1 . /}‘ : :
when thel /3 resonance is well inside the incoherent tune = o™ \*&;}’\3 "y
spread { = 0.012, red), the emittance grows strongly and S 001 e jerees S is ~\\j:.*.jfi‘:n
the amplitudes of both modes are significantly enhanced E ””””””””””””” Round GSA: T node L
(nOt ShOWﬂ). s 00014 HFMM 1t node
T HFMWM  o- node
% 0. 0001 U
CR + Sextupole / =.34233 / AQ=0 / PF .23 .231.232.233.234.235.236.237.23
1.8 [Q
1.7 s —
1.6 r—‘— Figure 4: The spectra of the,- ando,—mode computed
~ 157 ; £=.012 , 0g2k,=. 003 1 with BBDeMo2D with 51 particles in the round GSA (red,
f ig 7 .j £2.000 , 0pkp=.010 = | green) and with54 particles in the HFMM approach (blue,
“ H purple).
1.1 ;/}
1F
0 20000 40000 60000 80000 100000120000 3 OUTLOOK

n
WMPT and PF show good agreement in the 1 d.o.f cases

Figure 3: Emittance growth with beam—beam and Sexthus we are extending both to the more important 2 d.o.f
tupole. PF with 40%401 over+60,. o3k, is the nor- case and will determine which is more efficient. We will
malized sextupole strength. also continue the analytical work including extensions to
2 d.o.f, development of a spectral theory for the linearized
equations and development of a weakly nonlinear theory to
2.2 Preliminary resultsin two d.o.f. investigate coupling of Fourier modes within and between
the o andw equations. We investigate long term tracking

We are modifying the PF and WMPT codes to work iny;ith the averaged equations which should give a speed up
the 4-D transverse phase spaBBPF2D, BBDeMo2D). Ini- ¢ 0(1/¢).
tial results for PF show that with &1 grid and 4-D cu-  \ork supported by DOE contract DE-FGO3-

bic interpolation the probability is not satisfactorily con-9ggEr41104.  Discussions with R. L. Warnock are
served even for a short time. We hope to improve the 4-Rratefully acknowledged.

PF performance by higher order local or global (spline) in-

terpolauo_n. WMPT conserves probability b_y construcu_on, 4 REFERENCES

however it requires attention in order to avoid an operations
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