Proceedings of the 2001 Particle Accelerator Conference, Chicago

INITIAL AND SUBSEQUENT GROWTH OF THE FAST ION
(“ION HOSE”) INSTABILITY*

R. A. Bosch,” Synchrotron Radiation Center, University of Wisconsin-Madison,
3731 Schneider Dr., Stoughton, WI 53589, USA

Abstract

The fast ion instability is considered for a distribution
of ion bounce frequencies. Because of the spread in
bounce frequencies, the instability initially grows
exponentially with propagation distance. When the initial
growth saturates, the instability grows exponentially with
the square root of the propagation distance; the saturated
growth equals that calculated when the spread in ion
bounce frequencies is neglected. For a broad distribution
of ion bounce frequencies, instability may be prevented by
a betatron damping rate that exceeds the incoherent
betatron frequency shift induced by ions at the tail of the
bunch train.

1 INITIAL GROWTH

To model the initial growth of the fast ion instability
[1-11] and thereby determine the betatron damping rate or
feedback necessary to prevent it, a distribution of ion
“bounce” frequencies is considered. The bounce
frequency is the natural frequency of transverse ion
oscillations about the electron orbit [12], given for small
vertical oscillations (<<a ) of singly charged ions by
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in which n, is the time-averaged electron density on axis
during the passage of a bunch train or electron beam, m is
the ion mass, o, and o, are the horizontal and vertical

beam dimensions, e is the electron charge and €, is the

permittivity of free space. Because of the dependence
upon the ion mass and the position-dependent quantities
n, o, and o, alarge range of ion bounce frequencies

may be expected in atypical electron storage ring.

We consider a magnetically focused electron beam or
bunch train, using a smooth approximation for the betatron
focusing. In the case of a bunch train, we model a bunch
train of duration T, as an electron beam of duration t,. The
propagation time Z= zlv describes the propagation
distance z divided by beam velocity v, while coordinate
T =t - z/v denotes the time after passage of the beam head.
We assume that the ion density grows linearly with the
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passage of the beam. For small vertical displacements
(<<a,) of the electrons, the electron “bounce frequency”

in the ion channel, denoted w(T), is
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where n(T) isthe ion density at atime T after the passage
of the beam head, m, is the electron mass, and y is the
relativistic factor. For ions created by collision of the
electrons with neutral molecules and lost on a time scale
large compared to the beam duration T, n(T)is
proportional to T, so we have
0.2 (T) = KT, (€)
where K = w(t)/1,,

The approximate equations of motion for the electron
beam vertical position b(Z,T), the average vertical position
c(Z,T) of all ions, and the average vertical position ¢(Z,T)
of those ions with bounce frequency w are[1]
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where oy is the electron betatron frequency in the absence
of ions.

When w3 =0, egs. (1)«5) describe the “ion hose”
instability of an electron beam focused by a beam-induced
ion channel [1]. In an electron storage ring, where ion
effects are a perturbation to the betatron motion in applied
magnetic fields, we instead have wy >> w(T).

In eq. (5), the term (1/T)d+c;(Z,T) describes the
damping of collective ion oscillations that results from the
constant creation rate of stationary ions. This damping
rate of ~U/T is small compared to the phase-mix damping
rate ~dw from an ion frequency spread of dw provided
that &y >> 1/T. Conseguently, its neglect is justified for
dwT >> 1, i.e. severa ion oscillation periods behind the
head of the beam when there is a large ion frequency
spread. For dwT >> 1, we therefore approximate eg. (5)
as

[8% +0?]c (Z.T) =wb(Z,T) . (6)
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For a disturbance originating at (Z,T) = (0,0), we look
for a solution where b(Z,T) and c(Z,T) are of the form [10]
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with w>0. In eq. (7), the incoherent betatron frequency

shift resulting from the ions, w’(T)/2uy, is included in the

oscillation frequency. The slowly-varying function g(Z,T)

describes the oscillation growth. To ensure that wis the

initial oscillation frequency in the laboratory, we consider

solutions where g(Z,T) isreal for small Z

Substituting eg. (7) into egs. (4) and (6) yields

(Ziwﬁazg)b= KTc, (8)

[ 2742) a9 -6 (2) +&’le; =w’b, (9
where 6XZ) isgiven by
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The quantity oXZ) is the oscillation frequency in the
laboratory given by eg. (7) when g(Z,T) is real; &(Z)

equals wfor Z =0, and equals zero for Z = Z , where
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For a normalised distribution over positive ion bounce
angular frequenciec f(w), the average ion vertical position,

C:ICif )

(10)

dooi may be obtained from eg. (9), giving
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Using eg. (12) to eI|m| nate c(Z T) from eq. (8) yields
)doo (13)
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To obtain the initial growth rate when g(Z,T) is real,

consider the weak growth limit (0; g — 0) given by the
Plemelj formula[13]
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For an ion distribution with width 8w, 6XZ)=w and
flX(Z) |) = f(w) when Z << (3w /w)Z,. Equation (14) then
becomes
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which integrates to g|ve solutionswith g(0,T) =g(Z,0) =0
0 2 0
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The requirement that 0(Z,T) be area function for small
Z determines w, which obeys
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For an ion distribution peaked at w,, eq. (17) indicates that
W= (qo Thus, we have
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The solution with the “+” sign undergoes exponential
growth in T and Z. Substituting eq. (18) into eq. (7) yields
solutions valid for Z<< (0w /w)Z, dwT >> 1, and
sufficiently small Z that the Plemelj formula applies
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For a broad distnbutlon of ion bounce frequencies
where 0w /w, ~ 1/2, the initial growth rate in Z is
comparable to the incoherent betatron frequency shift of
W (T)/20y that results from the ions. Consequently,
instability may be prevented by a betatron damping rate
that exceeds the incoherent betatron frequency shift
induced by ions at the tail of the bunch train.

(17)

(19)

2 SUBSEQUENT GROWTH

Consider the instability growth when (8w /w)Z, << Z
<< 2Z and dwT >> 1. For adisturbance with w= w,, we
have ||7.()Z)| —oqo| >>8w) , S0 that eq. (13) becomes
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Equation (20) is identical to that describing the fast ion

instability when all ions have the same bounce frequency
(see Ref. [10], eg. 18). When Z << Z, eq. (20) becomes

(0,9)(0 g) = P (21)
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with solutions[2]
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For (0w /w,)Z, << Z << Z,, the growing solution given
by eq. (22) has lower values of 0,9 and 09 than is
given by eq. (18), indicating that the initial instability
growth has saturated. The saturation occurs when the
oscillation frequency in the laboratory, &XZ), no longer
coincides with a typical ion bounce frequency. The
saturated growth equal s that cal culated when the spread in

ion bounce frequenciesis neglected.

(22)

3 EXAMPLE

Consider a Cauchy distribution of ion bounce
frequencies with peak at w, and half-width dw << ),
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dw /T
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For a Cauchy distribution, the decoherence function [3]

defined by D(T) 5[d & (w)expli(cq ~,)T] equals
exp(-3wT). The exponential ion decoherence (also

called “phase-mix damping”) for a Cauchy distribution of
ion bounce frequencies behaves like frictional damping
(“phenomenological” or “Q-damping”) of ions with a
single bounce frequency [14]. For an exponentia ion
decoherence, eq. (30) of Ref. [3] gives a solution for
0(z,T) with g(2,0) = g(0,T) = O, valid for Z<< Z_. In our

notation, this solutionis
/12
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where | is the zeroth-order Bessel function of imaginary
argument.

For small Z, the Taylor expansion A(Z,T) = A(Q,T) +
[0A/0Z(0,T)]Z gives

f(w):( (23)

explg(z.T)] =A(Z,T) =exp(-84T)I,
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which, for dwT >> 1, reduces to
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Thisisidentical to the growing solution given by eq. (18),
confirming that eq. (18) describes the initial instability
growth.  For a Cauchy distribution of ion bounce
frequencies, we expect that the Plemelj formula may be
applied to eg. (13) when the integrand's pole at w_ + 10,9
is much closer to the real axis than the poles of f(w)
located at W), + idw. Thus, eq. (26) is expected to apply
for Z << (8w/w)°Z, and dwT >> 1.

In contrast, for Z >> Z/(w,T)?, the Bessel functions in
eg. (24) may be approximated by their large-argument
asymptotic expansion, yielding eqg. (31) of Ref. [3]
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For Z >> (8w /w)’Z, eq. (27) reproduces the growing
solution given by eqg. (22).

Consequently, for (3w /w)°Z, << Z << Z, and 3T >>
1, eg. (22) describes instability growth for a Cauchy
distribution. As expected, eq. (22) describes the saturated
growth subsequent to (i.e., downstream of) that described

by eq. (18).

4 SUMMARY

We have considered the initial and subsequent growth
of the fast ion instability for a distribution of ion bounce
frequencies. The initial growth is exponential in Z and T,
where Z is the propagation distance divided by beam
velocity, and T the time elapsed since the head of the
beam has passed. For larger Z, the growth is exponential
in Z” and T; this saturated growth equals that calculated
when the spread in ion bounce frequencies is neglected.
For a broad distribution of ion bounce frequencies,
instability growth may be prevented by a betatron
damping rate that exceeds the incoherent betatron
frequency shift induced by ions at the tail of the bunch
train.

REFERENCES

[1] K. T.Nguyen, R. F. Schneider, J. R. Smith and H. S.
Uhm, Appl. Phys. Lett. 50, 239 (1987).

[2] T.O. Raubenheimer and F. Zimmerman, Phys. Rev. E
52, 5487 (1995).

[3] G. V. Stupakov, T. O. Raubenheimer and F.
Zimmermann, Phys. Rev. E 52, 5499 (1995).

[4] K. Ohmi, Phys. Rev. E 55, 7550 (1997).

[5] J. Byrd, A. Chao, S. Heifets, M. Minty, T. O.
Raubenheimer, J. Seeman, G. Stupakov, J. Thomson
and F. Zimmermann, Phys. Rev. Lett. 79, 79 (1997).

[6] S. Heifets in Proceedings of the 1997 Particle
Accelerator Conference, Vancouver, Canada (IEEE,
Piscataway, NJ, 1998), p. 1620.

[7] J. Y. Huang, M. Kwon, T.-Y. Lee, I. S. Ko, Y. H.
Chin and H. Fukuma, Phys. Rev. Lett. 81, 4388
(1998).

[8] D. V. Pestrikov, Phys. Rev. ST Accel. Beams 2,
044403 (1999).

[9] G. V. Stupakov, Phys. Rev. ST Accel. Beams 3,
019401 (2000).

[10] R. A. Bosch, Phys. Rev. ST Accel. Beams 3, 034402
(2000).

[11] G. J. Caporaso and J. F. McCarrick in Proceedings of
the 20" International Linac Conference, Monterey,
2000, edited by A. W. Chao, eConf C000821, p. 500
(2000).

[12] E. Keil and B. Zotter, CERN-ISR-TH/71-58 (1971).

[13] D. R. Nicholson, Introduction to Plasma Theory
(Wiley, New York, 1983).

[14] R. A. Bosch and R. M. Gilgenbach, Phys. Fluids 31,
2006 (1988).

1989



