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Abstract 

An analytical formalism for the solution of cumulative 
beam breakup in linear accelerators with arbitrary beam 
current profile is developed.  It is applied to obtain an 
expression for the transverse displacement of trains of 
finite bunches.  The same formalism is used to investigate 
the beam breakup-enhanced displacement of beams 
caused by the misalignment of the deflecting structures or 
focusing elements. 

1 INTRODUCTION 
Cumulative beam breakup (BBU) has been extensively 

investigated in the past by many authors; the present work 
is a continuation a previous investigation of BBU in the 
case of bunches of finite length [1]. That previous 
investigation was limited to steady state analysis, and we 
extend it here to the analysis of the transient behavior of 
arbitrary beams and, in particular, of finite trains of 
bunches of finite length.  This extension is motivated by 
the increasing interest in pulsed high-current 
superconducting accelerators, and could also be applied to 
the analysis of long-range effects in linear colliders. 

2 EQUATION AND GENERAL SOLUTION 
In a continuum approximation, the transverse motion of 

a beam under the influence of focusing and BBU can be 
modeled by [1] 
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where   and  β γ  are the usual velocity and energy  
parameters; /sσ = L , is the distance from the front of the 
accelerator normalized to the accelerator length; κ  is the 
normalized focusing wave number; ( )/ )t ds cζ ω β= − � , is 

the time made dimensionless by the frequency ω  and 
measured after the arrival of the head of the beam at 
location σ ; ( ) ( ) /F I Iζ ζ= , the current form factor, is the 
instantaneous current divided by the average current;  

( )w ζ is the wake function, which, in the case of a single 
dipole mode, is assumed to be / 2( ) ( ) sin Qw U e ζζ ζ ζ −= ; ε  
is the coupling strength between the beam and the dipole 
mode, and includes properties of the beam and the 
deflecting mode of the accelerating structure. 

Without loss of generality we will assume a coasting 
beam, and constant BBU and focusing strengths along the 
accelerator.  Under some reasonable assumptions, these 
restrictions can often be relaxed and suitable coordinate 

transformations can be introduced to transform the full 
equation of motion to that of a coasting beam with 
constant parameters [2]. 

Under these assumptions, the equation of motion 
becomes 
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Applying to Equation (1) the Laplace transform with 
respect to the variable σ : ( ) ( )�, ,x x pσ ζ ζ� � =� �� , and 
assuming, for the sake of simplicity, that the beam enters 
the accelerator off, but parallel to, the axis, i.e.  
 ( ) ( ) ( )00, , 0, 0x x xσ ζ ζ σ ζ′= = = = , 
we obtain 

 
( ) ( )

( ) ( ) ( )

�
02 2

�
1 1 1 12 2

,

, .

px p x
p

d w F x p
p

ζ

ζ ζ
κ

ε ζ ζ ζ ζ ζ
κ −∞

=
+

+ −
+ �

 

Using the right-hand side of this equation to replace 
( )� ,x p ζ in the integral yields  
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The same substitution for ( )� ,x p ζ  can be applied to 
this last expression and repeated indefinitely.  This results 
in the following series expansion for ( )� ,x p ζ : 
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Applying the inverse Laplace transform to Equation (2) 
gives the transverse displacement ( , )x σ ζ  for arbitrary 
time ζ , location σ , beam current profile ( )F ζ , wake 
function  ( )w ζ , and time dependence of the beam offset 
at the entrance of the accelerator 0 ( )x ζ : 
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Several remarks can be made about the expression for 
( , )x σ ζ .  First, it is a series expansion in the powers of 

the ratio of BBU coupling to focusing strength; when the 
BBU is weak or the focusing strong, only a few terms 
need to be kept.  Second, the dependence on the current 
profile and wake function is limited to the functions 

( )nh ζ .  Third, the functions ( )nh ζ  depend only on the 
current or bunch profiles, not on their magnitude; that 
magnitude is included in the coefficient ε . 

3 EXAMPLES  

3.1 Single, very short bunch 
This formalism can be easily applied to the case of a 

single very short bunch entering the accelerator with a 
transverse offset 0x .  By very short we assume that the 
bunch length is much shorter than the period of the dipole 
mode, so the wake function can be assumed to be linear: 

( )w ζ ζ= .  The functions ( )nh ζ  can be easily calculated: 
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asymptotic form for the Bessel functions can be used, 
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This result was first obtained in [3]. 

3.2 Finite train of finite bunches 
A more interesting application of Equation (3) is the 

investigation of the transient behavior of a finite train of 
finite bunches.  We assume that the bunches are separated 
by ζ ωτ= , have a length αωτ , and that the charge has a 
constant profile within each bunch, so that 
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= � .  We assume that 

the wakefield is due to a single dipole mode: 
/ 2( ) ( ) sin Qw U e ζζ ζ ζ −= ; and we look at the transverse 

displacement of a particle located within bunch 1M + , 
and a (normalized) time α ωτ φ  behind the head of that 
bunch, so that [ ]Mζ ωτ α φ= + ; 0φ =  is the head of the 
bunch while 1φ =  is its tail. 

From Equation (3), the transverse displacement, at 
location σ , for a particle arriving at time 

[ ]Mζ ωτ α φ= +  is, to second order, 
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An example is shown in Figure 1. 
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Figure 1: Function 1 0( ) /h xζ  for the front of the bunch 
( 0φ = ) as a function of bunch number for 

10000, 0.1, 6 1.0005Q α ωτ π= = = ×  

4 MISALIGNED ACCELERATING 
STRUCTURES 

The same method can be used to analyze the beam 
displacement caused by a misalignment of the 
accelerating structures and coupling to the dipole modes.  
The transverse equation of motion becomes  
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where ( )d σ  is the displacement of the accelerating 
structure at location ,σ or more precisely the transverse 
displacement of the axis of the dipole mode with respect 
to the beam line defined by the focusing elements.  
Applying the Laplace transform yields 
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where we have assumed ( ) ( )0 00 and 0,x xζ ζ= =′ i.e. the 
beam enters the accelerator on, and parallel to, the axis.  
The right-hand side of the above equation can be used to 
replace � ( , )x p σ in the second integral, and the same 
process can be repeated indefinitely to give 
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 Applying the inverse Laplace transform gives the 
following expression for the transverse displacement of 
the beam  
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While a complete determination of ( , )x σ ζ  could be 
obtained if one had complete knowledge of ( )d σ , only a 
statistical determination is often available for the latter or 
needed for the former.  The mean square displacement of 
the beam at location σ  and time ζ  is given by 

( ) ( ) ( ) ( ) ( )2 2

1 1

, ,m n
mn m n

m n

x x H Hσ ζ ε σ ζ ζ
∞ ∞

+

= =

= −��  

where ( ) ( ) ( ) ( )2

0 0
,mn m n dx du dv i u i v R u v

σ σ
σ σ σ= − − −� �

and ( )dR u v− is the autocorrelation function of ( )d σ . 
If one assumes that the structures have a length 0σ , are 

displaced parallel to the axis, that their displacements are 
uncorrelated from one structure to the others, and follow a 
probability density of standard deviation 0d , then the 
autocorrelation function ( )dR u v−  is  
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In the limits 0 0 and 1,σ σ κ σ� �  a simpler model for 

( )dR u v−  that allows closed-form calculation of the 

functions ( )2
mnx σ  is ( )2

0 0( ) .dR u v d u vσ δ− = −  For large 
values of ,κ σ the asymptotic form of ( )mi σ can be used:  
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It is easy to show that the main contributions to 
( )2 ,x σ ζ  will be from m n= : 
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Applying this formalism to the case of a single, very 
short bunch, the functions ( )nH ζ  can be easily obtained: 
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Keeping only the first two terms gives 
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a result first obtained in [3].  The front of the bunch 
( 0)ζ = is not displaced but the bunch develops a tail that 
varies as 2ζ  and whose magnitude increases as 

1 1/ 2κ ε σ− as the bunch travels along the accelerator. 

5 MISALIGNED FOCUSSING ELEMENTS 
If, instead of the accelerating structures, the focusing 

elements are displaced, the equation of motion for the 
beam becomes  
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where ( )d σ is now the displacement of the focussing 
elements with respect to the beamline. 

Under the same assumptions as above, and applying the 
same formalism, the displacement of the beam is given by 
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This expression looks similar to the one for displaced 
accelerating structures, but with some important 
differences: the sum includes the 0n =  term and the 
indices for the functions 1( ) and ( )n nH iζ σ+  are different. 

The mean square displacement can be calculated in a 
similar fashion and is given by  
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With the same assumptions as for misaligned structures, 
and for a single very short bunch, this reduces to 
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Keeping only the first two terms: 
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In this case, the front of the bunch is displaced, even in 
the absence of coupling to the dipole mode, and its 
displacement varies as 1/ 2κ σ .  The bunch also develops a 
tail that varies as 4ζ  and whose magnitude increases as 

1 2 5 / 2κ ε σ− .  It can be noted that, whereas strong focusing 
reduces the effect of coupling between the beam and the 
dipole mode and inhibits the formation of a tail, it also 
increases the rms displacement of the bunch resulting 
from a misalignment of the focusing elements. 
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