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ANALYSISOF COUPLING IMPEDANCE BENCH MEASUREMENTS
USING BETHE'SDIFFRACTION THEORY™

S. De Santis, LBNL, Berkeley, California.

Abstract

In this paper we study the validity of coupling impedance
bench measurements, comparing two of the most
commonly used formulas to the result obtained applying a
modified version of Bethe's theory of diffraction to a
lumped impedance in a coaxial beam pipe. The eguations
found provide a quantitative expression for the influence of
the wire thickness used in the measurement of the real ad
imaginary part of the longitudinal impedance. The
precision achievable in an actual measurement is therefore
discussed. The method presented can also be applied in the
presence of distributed impedances as well as to the
analysis of transverse impedance measurements.

1INTRODUCTION

Bethe' s diffraction theory, in its modified version [1], has
been successfully used to analyticaly calculate the
coupling impedance of different structures that can be
found in an accelerator vacuum chamber [2-5].

More recently, several papers have been dedicated to the
theory of coupling impedance bench measurements, in
particular regarding the classic coaxia wire method [6-7].
In this paper we use Bethe's theory to caculate the
longitudinal impedance of a small aperture on a coaxial
beam pipe, as it would be idealy measured in a coaxia
wire set-up. The analytical formula obtained is compared
to the formula derived in [2], which has been checked
against MAFIA simulations and other semi-analytical
methods. This comparison gives some insight on the
influence of the wire on the measurement and on the
differences between the various formulas used to relate the
measured scattering parameters to the actual impedance.

Figure 1: Relevant geometry
2 MEASURED IMPEDANCE

The longitudinal impedance of asmall (with respect to the
wavelength) aperture on a coaxial beam pipe as shown in
Fig.1 can be caculated from the measured S,; parameter
using the Hahn-Pedersen formula [8]:
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where Z, is the characteristic impedance for a coaxia line
equal to 60 In(b/s) Q.
In Eq.(1) the S,; measured for the device under test is
normalized to that of areference section of equal length. In
the following we will aways assume that the reference
line has been calibrated out and will simply refer to S,;.
We aso assume pefect matching in the measuring
equipment and lossless materials and we will consder
only TEM waves which is a rigorous treatment for
frequencies below the TE,; mode cut-off, above which
this measurement technique is not accurate anyway.

2.1 Measured Impedance Calculation

In the absence of the coupling aperture, the incident field
(Eqr, Hoy) is of course confined to the inner coaxia line
and travels the length of the component experiencing only
a phase delay. When this dday is taken into account by
normalizing with the reference section, S,=1 and the
impedanceis zero, as expected.

The presence of the aperture generates forward ad
backward scettered waves travelling in both coaxia
regions. From the scattering matrix definition we can
write:
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where (Ej, Hiy) isthe forward wave in the inner region.
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Thiswave can be expressed as.
Er =c'e.e"%(2) .
Hip = 'y '%6(2) 9
where k,=217A is the wavenumber, 6(2) is the Heaviside

function, Z,=377 Q is the vacuum impedance, g, and h;,
are the TEM modal function in the inner coax
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and the excitation constant ¢ depends on the equivaent
dipole moments of the aperture M, and P:

o = -2 (koM +aR) ©

The equivaent dipole moments, in turn, depend on the
aperture polarizabilities a, and a,,,; and on the incident and
scattered fields:
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M, = amD(Ho¢ +Hiy - H°¢)r:b
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where (E,,, H,,) is the scattered field in the outer coaxial
region for which equations analogous to Egs.(3-5) ae
valid, if we just replace In(b/s) with In(d/b) and the
subscript i with o.

From these equations we calculate the dipole moments
expressions:
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where
A= In(d/b)In(b/s) ®
In(d/b)+In(b/s)
It is worth noticing that the expression for the dipole
moments obtained when directly calculating the impedance

(i.e. with the wire removed) differs from Eq.(7) only in
that A =In(d/b) which isthelimit for s — 0 of Eq.(8).
Asitisaready known from practice, impedances are best
measured with the thinnest possible wire.

Replacing Eq.(7) in Eq.(5) we obtain the expression for
the coefficient of the forward scattered wave in the
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and from Egs.(2) and (3) the scattering coefficient is
therefore:
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Replacing Eq.(10) in Eq.(1), we obtain:

Sn=1-]

(10)

20 a 4 200 0

jkoz ae+amD +J nbr;lsl\ko O ]kO ae+amD +J 4enbr£ﬂk0 O
ar'b® | anwks ALY a2 In(b/s) 1 Ok +jk, %e 9 0
1672b* N2 nb2/\ d 167°b*N? 71b2/\ a

3 COMPARISON WITH THEORY

An analytical formula for the longitudinal impedance of a

small aperture at low frequencies has been derived in [2]
using the modified Bethe’ sdiffraction theory:
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We can compare Eq.(13) to Eq.(11) simplified for small
aperture dimensions and low frequency. To this end we
keep in mind that the polarizabilities are proportional to
the aperture average radius cubed and that k, is
proportional to the frequency.

Therefore, disregarding higher order terms in a,, a,,; ad
ko EQ.(12) becomes:
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It is also interesting to compare Egs.(13) and (14) to the
impedance obtained from the measured S,; using Sands
and Rees expression [9]:
Iy = ch(l - 521) (15)
which, substituting Eq.(10) and simplifying for small
aperture dimensions and low frequencies, becomes:
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3.1 Imaginary Impedance

We can see immediately that the imaginary part of the
impedance, as calculated in Egs.(13,14) and (16) is exactly
the same:

Im(Z,) = | 17

This is not surprising since the imaginary impedance is
dominated by the reactive energy stored in the modes
below cut-off (i.e. non propagating) near the aperture.
These modes are, of course, not much influenced by the
presence of the wire.

It is worth pointing out that, apparently, Eq.(17) is totally
independent from the wireradiuss. This is not so as, if s
should increase to become comparable with b, the aperture
polarizabilities would be modified.

3.2 Real Impedance

In this case Egs.(13,14) and (16) coincide only in the limit
s — 0, asalready stated above:
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To further analyze the difference between the various
formulas we define an “error” function as follows:
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_ Re(Z.)-Re(Z;)
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where Z.. can be either one of the measured impedances
Zyp and Zg..
Wefind
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A first fact to notice is that Eq.(22) does not depend on the
aperture polarizabilities, which are generally unknown.
This means that, in principle, it would be possible to
reconstruct the theoretica value of the longitudinal
impedance from its value measured using Sands and Rees
formula

As Eq.(23) is regaded, let's remind that transverse
magnetic and el ectric polarizabilities always have opposite
sign and write |a | = y|ae|. We have:
2

Epp = # Ex (24)
The function multiplying Eg reaches its maximum value
of 1 for y=1 and decreases monotonically to zero
esewhere. y=1 corresponds to the case of a very long
rectangular or rounded-end dlot.

This means that E,p < Ex, i.e. the impedance measured
using the Hahn-Pedersen formula is always closer to the
theoretical value than if the Sands-Rees formula is used.
As an example, for a circular hole y=2 and so
Ep = 0.8Ex.

This is aso consistent with the fact that the Sands-Rees
formula can be derived from the Hahn-Pedersen one as the
latter approximation for small values of the impedance

(8].
4 CONCLUSIONS

In this paper we used a modification of Bethe's diffraction
theory to calculate the impedance of an aperture in a
coaxial beam pipe as it would be measured using the
classic coaxia wire technique. This result has been
compared to the impedance value obtained applying
directly the diffraction theory.

The imaginary part of the impedance is not affected, in
first approximation, by the wire presence and the Hahn-
Pedersen and the Sands-Rees formulas give the same result
asthedirect calculation.

For the real impedance, the Hahn-Pedersen formula gives
an impedance always closer to the theoretical value than
the Sands-Rees one. The difference between theoretical
impedance and as calculated by Sands-Rees does not
depend on the aperture polarizabilities so that it is
possible to write a general formula that alows to obtain
the theoretical impedance value from the measured one:

_ In(b/s)
Zy = Re(Zg) Ind/s)
The procedure presented in this paper can also be extended
to the study of the transverse impedance and used for
structures more complex than this simple example.
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