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Abstract

We present the applications of wavelet analysis meth-
ods in constrained variational framework to calculation of
dynamical aperture. We construct represention via exact
nonlinear high-localized periodic eigenmodes expansions,
which allows to control contribution to motion from each
scale of underlying multiscale structure and consider qual-
itative approach to the problem.

1 INTRODUCTION

The estimation of dynamic aperture of accelerator is real
and long standing problem. From the formal point of view
the aperture is a some border between two types of dynam-
ics: relative regular and predictable motion along of ac-
ceptable orbits or fluxes of orbits corresponding to KAM
tori and stochastic motion with particle losses blown away
by Arnold diffusion and/or chaotic motions. According to
standard point of view this transition is being done by some
analogues with map technique [1]. Consideration for aper-
ture of n-pole Hamiltonians with kicks
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is done by linearisation and discretization of canonical
transformation and the result resembles (pure formally)
standard mapping. This leads, by using Chirikov criterion
of resonance overlapping, to evaluation of aperture via am-
plitude of the following global harmonic representation:
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The goal of this paper is is two-fold. In part 2 we con-
sider some qualitative criterion which is based on more
realistic understanding of difference between motion in
KAM regions and stochastic regions: motion in KAM re-
gions may be described only by regular functions (with-
out rich internal structures) but motion in stochastic re-
gions/layers may be described by functions with internal
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self-similar structures, i.e. fractal type functions. Wavelet
analysis approach [2], [3] provides us with more or less
analytical description based on calculations of wavelet co-
efficients/wavelet transform asymptotics. In part 3 we con-
sider the same problem on a more quantitative level as con-
strained variational problem and give explicit representa-
tion for all dynamical variables as expansions in nonlinear
periodic high-localized eigenmodes.

2 QUALITATIVE ANALYSIS

Fractal or chaotic image is a function (distribution),
which has structure at all underlying scales. So, such ob-
jects have additional nontrivial details on any level of res-
olution. But such objects cannot be represented by smooth
functions, because they resemble constants at small scales
[2], [3]. So, we need to find self-similarity behaviour dur-
ing movement to small scales for functions describing non-
regular motion. So, if we look on a “fractal” function f
(e.g. Weierstrass function) near an arbitrary point at differ-
ent scales, we find the same function up to a scaling fac-
tor. Consider the fluctuations of such function f near some
point x0

floc(x) = f(x0 + x) � f(x0) (3)

then we have

fx0(�x) � ��(x0)fx0(x) (4)

where �(x0) is the local scaling exponent or Hölder expo-
nent of the function f at x0.

According to [3] general functional spaces and scales of
spaces can be characterized through wavelet coefficients
or wavelet transforms. Let us consider continuous wavelet
transform
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b 2 Rn; a > 0, w.r.t. analyzing wavelet g, which is
strictly admissible, i.e.

Cg;g =
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Wavelet transform has the following covariance property
under action of underlying affine group:

Wg(�a; x0 + �b) � ��(x0)Wg(a; x0 + b) (5)

So, if Hölder exponent of (distribution) f(x) around the
point x = x0 is h(x0) 2 (n; n + 1), then we have the
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following behaviour of f(x) around x = x0: f(x) = c0 +
c1(x � x0) + : : :+ cn(x � x0)

n + cjx � x0jh(x0). Let
analyzing wavelet have n1 (> n) vanishing moments, then

Wg(f)(x0; a) = Cah(x0)Wg(f)(x0; a) (6)

and Wg(f)(x0; a) � ah(x0) when a ! 0. But if f 2 C1

at least in point x0, thenWg(f)(x0; a) � an1 when a! 0.
This shows that localization of the wavelet coefficients at
small scale is linked to local regularity. As a rule, the faster
the wavelet coefficients decay, the more the analyzed func-
tion is regular. So,transition from regular motion to chaotic
one may be characterised as the changing of Hölder ex-
ponent of function, which describes motion. This gives
criterion of appearance of fractal behaviour and may de-
termine,at least in principle, dynamic aperture.

3 CONSTRAINED PROBLEM FOR
QUASI-PERIODIC ORBITS

We consider extension of our approach [4]-[15] to the
case of constrained quasi-periodic trajectories. The equa-
tions of motion corresponding to Hamiltonian (1) may be
formulated as a particular case of the general system of or-
dinary differential equations dxi=ds = fi(xj ; s), (i; j =
1; :::; 2n), where fi are not more than rational functions of
dynamical variables xj and have arbitrary dependence of
time but with periodic boundary conditions. Let us con-
sider this system as an operator equation for operator S,
which satisfies the equation

S(H; x; @=@s; @=@x; s) = 0 (7)

which is polynomial/rational in x = (x1, : : : , xn, p1, : : : ,
pn) and have arbitrary dependence on s and operatorC(H ,
x, @=@t, @=@x, s), which is an operator describing some
constraints as differential as integral on the set of dynam-
ical variables. E.g., we may fix a part of non-destroying
integrals of motion (e.g., energy) or areas in phase space
(fluxes of orbits). So, we may consider our problem as
constructing orbits described by Hamiltonian (1). In this
way we may fix a given acceptable aperture or vice versa
by feedback via parametrisation of orbits by coefficients of
initial dynamical problem we may control different levels
of aperture as a function of the parameters of the system (1)
under consideration. As a result our variational problem is
formulated for pair of operators (C, S) on extended set of
dynamical variables which includes Lagrangian multipliers
�.

Then we use (weak) variation formulation

Z
< (S + �C)x; y > dt = 0 (8)

We start with hierarchical sequence of approximations
spaces:

: : : V�2 � V�1 � V0 � V1 � V2 : : : ; (9)

and the corresponding expansions:
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As a result we have from (7) the following reduced system
of algebraical equations (RSAE) on the set of unknown co-
efficients ai of expansions (10):

L(Sij ; Ckl; a;�) = 0 (11)

where operator L is algebraization of initial problem (7)
and we need to find in general situation objects �.
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We consider the procedure of their calculations in case of
quasi/periodic boundary conditions in the bases of periodic
wavelet functions with periods Ti on the interval [0,T] and
the corresponding expansion (10) inside our variational ap-
proach. Periodization procedure gives
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X
`2Z
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So, '̂;  ̂ are periodic functions on the interval [0,T]. Be-
cause 'j;k = 'j;k0 if k = k0mod(2j), we may consider
only 0 � k � 2j and as consequence our multiresolution
has the form

[
j�0

V̂j = L2[0; T ] with V̂j = spanf'̂j;kg2j�1k=0

[16]. Integration by parts and periodicity gives useful re-
lations between objects (12) in particular quadratic case
(d = d1 + d2):
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So, any 2-tuple can be represented by �d
k. Then our sec-

ond (after (11)) additional algebraic (linear) problem is
reduced according to [16] to the eigenvalue problem for
f�d

kg0�k�2j by creating a system of 2j homogeneous rela-
tions in �d

k and inhomogeneous equations. So, if we have
dilation equation in the form '(x) =

p
2
P

k2Z hk'(2x�
k), then we have the following homogeneous relations
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or in such form A�d = 2d�d, where �d = f�d
kg0�k�2j .

Inhomogeneous equations are:

X
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where objects M d
` (j`j � N � 2) can be computed by re-

cursive procedure

Md
` = 2�j(2d+1)=2 ~Md

` ; (17)
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So, this problem is the standard linear algebraical problem.
Then, we may solve RSAE (11) and determine unknown

coefficients from formal expansion (10) and therefore to
obtain the solution of our initial problem. It should be noted
that if we consider only truncated expansion with N terms
then we have from (11) the system of N � 2n algebraical
equations and the degree of this algebraical system coin-
cides with the degree of initial differential system. As a
result we obtained the following explicit representation for
periodic trajectories in the base of periodized (period T i)
wavelets (10):

xi(s) = xi(0) +
X
k

aki  
i
k(s); xi(0) = xi(Ti); (18)

Because affine group of translation and dilations is inside
the approach, this method resembles the action of a mi-
croscope. We have contribution to final result from each
scale of resolution from the whole infinite scale of spaces.
More exactly, the closed subspace Vj(j 2 Z) corresponds
to level j of resolution, or to scale j. The solution has the
following form

x(s) = xslowN (s) +
X
j�N

xj(!js); !j � 2j (19)

0
5

10
15

20
25

30

0

10

20

30
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Figure 1: Periodic structure on level 6.

which corresponds to the full multiresolution expansion
in all time scales. Formula (19) gives us expansion into a
slow part xslowN and fast oscillating parts for arbitrary N.
So, we may move from coarse scales of resolution to the
finest one for obtaining more detailed information about
our dynamical process. The first term in the RHS of equa-
tion (19) corresponds on the global level of function space
decomposition to resolution space and the second one to
detail space. In this way we give contribution to our full
solution from each scale of resolution or each time scale.
On Fig. 1 we present (quasi) periodic regime on section
x� px corresponding to model (1).
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