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Abstract

Physically speaking, the delta function like beam-beam
nonlinear forces at interaction points (IPs) act as a sum of
delta function nonlinear multipoles. By applying the gen-
eral theory established in ref. [1], in this paper we exame
analytically the beam-beam interaction limited dynamic
apertures and the corresponding beam lifetimes for both
the round and the flat beams. Relations between the beam-
beam limited beam lifetimes and the beam-beam tune shifts
are established, which show clearly why experimentally
one has always a maximum beam-beam tune shift, ξy,max,
around 0.045 for e+e− circular colliders, and why one can
use round beams to double this value approximately.

1 INTRODUCTION

Due to the importance of beam-beam effects, enormous
efforts have been made toward better understandings [2]-
[17]. Physically speaking, the delta function like beam-
beam nonlinear forces at interaction points (IPs) act as a
sum of delta function nonlinear multipoles. In ref. [1] we
have established a general theory to study analytically in
detail the delta function multipoles and their combined ef-
fects on the dynamic apertures in circular storage rings,
and in this paper we will apply these general analytical
formulae to the case of beam-beam interactions and find
the corresponding beam dynamic apertures and beam life-
times. Finally, we will show quantitatively why there exists
a maximum beam-beam tune shift, ξy,max, around 0.045
for flat beams in e+e− circular colliders, and why this num-
ber can be almost doubled for round colliding beams.

2 BEAM-BEAM INTERACTIONS

For two head on colliding bunches, the incoherent kick
felt by each particle can be calculated as [10]:

δy′ + iδx′ = −Nere
γ∗

f(x, y, σx, σy) (1)

where x′ and y′ are the horizontal and vertical slopes, Ne

is the particle population in the bunch, re is the electron
classical radius (2.818×10−15 m), σx and σy are the stan-
dard deviations of the transverse charge density distribu-
tion of the counter-rotating bunch at IP, γ∗ is the normal-
ized particle’s energy, and ∗ denotes the test particle and the
bunch to which the test particle belongs. When the bunch
is Gaussian f(x, y, σx, σy) can be expressed by Basseti-
Erskine formula [7]. For the round beam (RB) and the flat
beam (FB) cases one has the incoherent beam-beam kicks

expressed as [3][9][10]:
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γ∗r

(
1 − exp

(
− r2

2σ2

))
(RB) (2)
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√
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γ∗σx
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(
− x2

2σ2
x

)∫ x√
2σx

0

eu
2
du (FB)

(3)
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2πNere
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exp
(
− x2

2σ2
x

)
erf

(
y√
2σy

)
(FB)

(4)
where r =

√
x2 + y2. Now we want to calculate the av-

erage kick felt by the test particle since the probability to
find the transverse displacement of the test particle is not
constant (in fact, the probability function is the same as the
charge distribution of the bunch to which the test particle
belongs in lepton machines due to synchrotron radiations).
In the following we assume that the transverse sizes for the
two colliding bunches at IP are exactly the same. For the
round beam case after averaging one gets[3][11]:

δr̄′ = −2Nere
γ∗r̄

(
1 − exp

(
− r̄2

4σ2

))
(RB) (5)

Although this expression is the same as that of the coherent
beam-beam kick for round beams, one should keep in mind
that we are not finding coherent beam-beam kick originally,
and the difference will be obvious when we treat the verti-
cal motion in the case of flat beams. For the flat beam case,
we will treat the horizontal and vertical planes separately.
As far as the horizontal kick is concerned, the horizontal
kick depends only on one displacement variable just simi-
lar to the round beam case, we will use its coherent form
expressed as follows [9][11]:

δx′ = −2Nere
γ∗σx

exp
(
− x2

4σ2
x

)∫ x
2σx

0

exp(u2)du (FB)

(6)
where σx in the incoherent formula in ref. [9] has been
replaced by Σx =

√
2σx (for two identical Gaussian col-

liding beams) according to Hirata theorem demonstrated in
the appendix A of ref. [11]. As for the vertical kick, how-
ever, one has to make an average over eq. 4 with the hori-
zontal probability distribution function of the test particle,
and one gets [10]:

δy′ =
−√

2πNere < exp
(
− x2

2σ2
x

)
>x erf

(
y√
2σy

)
γ∗σx

(FB)

(7)
where <>x means the average over the horizontal proba-
bility distribution function of the test particle, and for two
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identical colliding Gaussian beams <>x= 1/
√

2. It is ob-
vious that eq. 7 is not the expression for the coherent beam-
beam kick. To study both round and flat beam cases, we
expand δr̄′ at x = 0 (for round beam we study only ver-
tical plane since the formalism in the horizontal plane is
the same), δx′ and δy′ expressed in eqs. 5, 6 and 7, re-
spectively, into Taylor series, and the differential equations
of the motion of the test particle in the transverse planes
can be obtained from the corresponding Hamiltonians ex-
pressed as:

H =
p2y
2

+
Ky(s)

2
y2+

Nere
γ∗

(
1

4σ2
y2− 1

64σ4
y4+

1
1152σ6

y6

− 1
24576σ8

y8 + · · ·)
∞∑

k=−∞
δ(s− kL) (RB) (8)

Hx =
p2x
2

+
Kx(s)

2
x2+

Nere
2γ∗

(
1
σ2

x

x2− 1
12σ4

x

x4+
1

180σ6
x

x6

− 1
3360σ8

x

x8 + · · ·)
∞∑

k=−∞
δ(s− kL) (FB) (9)

Hy =
p2y
2

+
Ky(s)

2
y2 +

Nere√
2γ∗

(
1

σxσy
y2 − 1

12σxσ3
y

y4

+
1

120σxσ5
y

y6 − 1
1344σxσ7

y

y8

+ · ··)
∞∑

k=−∞
δ(s− kL) (FB) (10)

where px = dx/ds and py = dy/ds.

3 REVIEW

In ref. [1] we have studied analytically the one dimen-
sional (y = 0) dynamic aperture of a storage ring described
by the following Hamiltonian:

H =
p2

2
+
K(s)

2
x2 +

1
3!Bρ

∂2Bz

∂x2
x3L

∞∑
k=−∞

δ(s− kL)

+
1

4!Bρ
∂3Bz

∂x3
x4L

∞∑
k=−∞

δ(s− kL) + · · · (11)

where

Bz = B0(1+xb1+x2b2+x3b3+x4b4+···+xm−1bm−1+···)
(12)

The dynamic aperture corresponding to each multipole is
given as:

Adyna,2m,x(s) =
√

2βx(s)
(

1
mβm

x (s2m)

) 1
2(m−2)

×
(

ρ

|bm−1|L
)1/(m−2)

(13)

where s2m is the location of the 2mth multipole, βx(s) is
the beta function in x plane. Since these results are general,
we have tried to avoid to assign the freedom of motion, x,
a specific name, such as horizontal, or vertical plane.

m 4 6 8 10 12
Cm,RB 16 192 3072 61440 1474560
Cm,FB,x 3 30 420 7560 166320
Cm,FB,y 3 20 168 1728 21120

Table 1: summary of multipole coefficients

4 BEAM-BEAM LIMITED DYNAMIC
APERTURES

To make use of the general dynamic aperture formulae
recalled in section 3, one needs only to find the equiva-
lence relations by comparing three Hamiltonians expressed
in eqs. 8, 9, and 10 with eq. 11, and it is found by analogy
that:

bm−1

ρ
L =

Nere
Cm,RBγ∗σm

(RB) (14)

bm−1

ρ
L =

Nere
Cm,FB,x2γ∗σm

x

(FB, x) (15)

bm−1

ρ
L =

Nere

Cm,FB,y

√
2γ∗σxσ

m−1
y

(FB, y) (16)

where Cm,RB , Cm,FB,x, and Cm,FB,y are given in Table
1. Now by inserting eqs. 14-16 into eq. 13 one can calcu-
late dynamic apertures of different multipoles due to non-
linear beam-beam forces. Given the dynamic aperture of
the ring without the beam-beam effect as Ax,y , the total
dynamic aperture including the beam-beam effect can be
estimated usually as:

Atotal,x,y(s) =
1√

1
Ax,y(s)2 + 1

Abb,x,y(s)2

(17)

In the following we will consider the case of
Atotal,x,y(s) ≈ Abb,x,y(s), and we find:

Ry,8 =
Adyna,8,y(s)
σ∗(s)

=
(

16γ∗σ2

Nereβy(sIP )

)1/2

(RB)

(18)

Rx,8 =
Adyna,8,x(s)
σ∗,x(s)

=
(

6γ∗σ2
x

Nereβx(sIP )

)1/2

(FB)

(19)

Ry,8 =
Adyna,8,y(s)
σ∗,y(s)

=

(
3
√

2γ∗σxσy

Nereβy(sIP )

)1/2

(FB)

(20)
Recalling and using the definitions of the beam-beam tune
shifts ξx and ξy , one can simplify the above defined nor-
malized dynamic apertures. As general results one finds:

Ry,2m =
Adyna,2m,y(s)

σ∗,y(s)
=

(
2

m−2
2 Cm,RB

4π
√
mξ∗y

) 1
m−2

(RB)

(21)

Rx,2m =
Adyna,2m,x(s)

σ∗,x(s)
=

(
2

m−2
2 Cm,FB,x

2
√
mπξ∗x

) 1
m−2

(FB)

(22)
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Ry,2m =
Adyna,2m,y(s)

σ∗,y(s)

=

(
2

m−2
2 Cm,FB,y√

2mπξ∗y

) 1
m−2

(FB) (23)

5 BEAM-BEAM LIFETIMES

We take the beam-beam limited dynamic aperture as the
rigid mechanical boundary. Based on this physical point of
view we can use the beam quantum lifetime formula [18]
to estimate the beam lifetime due to beam-beam effect:

τbb =
τy
2

(
< y2 >

y2
max

)
exp

(
y2

max

< y2 >

)

=
τy
2

(
σy(s)2

Adyna,y(s)2

)
exp

(
Adyna,y(s)2

σy(s)2

)
(24)

where ymax is the boundary dimension, <> denotes the
average over the particle distribution, and τy is the syn-
chrotron radiation damping time in vertical plane. In eq.
24 we have replaced the ymax and < y2 > by Adyna,y and
σ2

y , respectively. When the beam-beam octupole nonlinear
force dominates the dynamic aperture, by inserting eqs. 18,
18, and 20 into eq. 24, or inserting eqs. 21, 22, and 23 into
eq. 24 one gets:

τ∗bb,y =
τ∗y
2

(
4
πξ∗y

)−1

exp
(

4
πξ∗y

)
(RB) (25)

τ∗bb,x =
τ∗x
2

(
3
πξ∗x

)−1

exp
(

3
πξ∗x

)
(FB) (26)

τ∗bb,y =
τ∗y
2

(
3√

2πξ∗y

)−1

exp

(
3√

2πξ∗y

)
(FB)

(27)

6 THE MAXIMUM BEAM-BEAM TUNE
SHIFTS

Now it is high time for us to discuss the maximum beam-
beam tune shift problem. In literatures the term “maximum
beam-beam tune shift” of a specific machine is not well de-
fined. One of the reasonable definitions would be that the
maximum beam-beam tune shift corresponding to a well
defined minimum beam-beam limited lifetime. In this pa-
per we propose to take this well defined minimum beam-
beam limited lifetime as one hour (the idea is to reduce eq.
17 toAtotal(s) ≈ Abb(s), and to have a machine still work-
ing!). Assuming that for both round and flat beam cases
one has the same τy , from eqs. 25, 26 and 27 one finds the
following relations:

ξRB
y,max =

4
√

2
3
ξFB
y,max = 1.89ξFB

y,max (28)

and
ξFB
x,max =

√
2ξFB

y,max (29)

It is proved theoretically why round beam scheme can al-
most double the ξy,max of flat beam scheme as previously
discovered in the numerical simulations [13][14], and why
the vertical beam-beam tune shift reaches its limit earlier
than the horizontal one. Quantitatively, taking τy = 30
ms, one finds that ξy,max,FB(τbb = 1 hour)= 0.0447,
ξx,max,FB(τbb = 1 hour)= 0.0632, and ξy,max,RB(τbb =
1 hour)= 0.0843. The detailed discussion on how to
choose working point and the effects of a finite crossing
angle can be found in ref. [17].

7 CONCLUSION

In this paper we have established analytical formulae for
the beam-beam interaction limited dynamic apertures and
beam lifetimes in e+e− circular colliders for both round
and flat beam cases. It is shown analytically why for
flat colliding beams one has always ξy,max around 0.045
and why this value can be almost doubled by using round
beams.
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