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Abstract

It is known that the symplecticity property for Hamiltonian
systems is lost for truncated Lie maps. In the case of long
time evolution this fact can lead to spurious effects appear-
ance and/or to real effects vanishing. In this report an order-
by-order symplectification method for truncated Lie maps
is described. This method is based on the matrix formal-
ism for Lie algebraic tools. According to this formalism
truncated Lie map presented as a set of two-dimensional
matrices corresponded to nonlinear aberrations up to N or-
der. Matrix elements can be evaluated using computer alge-
bra codes and Kronecker sum and production tools. These
block-matrices for accelerator lattices are elements of a
corresponding database. The additional conservative con-
ditions (in our case it is symplectic conditions) lead to lin-
ear homogeneous algebraic equations for matrix elements.
Choosing basis elements (calculated using the matrix for-
malism algorithms) one can calculate the others. Resulting
block-matrices guarantee the symplecticity of the truncated
Lie map up to the N-th order. These linear relations can be
calculated in advance and stored in a symbolic database.
Finally, this method is applied to some practical problems
of particle physics.

1 INTRODUCTION

It is known that the most part of beam physics problems
can be described using the Hamiltonian presentation. Main
properties of similar systems are in common practice of
qualitative investigations. But the practical calculations
based only on numerical algorithms do not guarantee in
general the symplecticity property which is inherent to all
Hamiltonian systems. Failing of this property can produce
losing of real effects and to acquisition of false effects. That
is why all commonly used numerical methods should have
the symplecticity property. In that case the simulation pro-
cess will guarantee adequate and accurate results. In re-
cent years there have been successful results in computer
modeling of long beam evolution using the Lie algebraic
methods. According to this approach a simulator constructs
high-order maps and use them for the design, optimization
and operation of beamlines. However the practical real-
ization of this powerful approach does not guarantee the
symplecticity property automatically. Indeed the realiza-
tion of Lie methods usually uses truncated series in differ-
ent forms. As it is known these truncated series have not
properties intrinsical to the starting map. There are some
works (see, e.g. [1]–[3]) where some symplectification al-
gorithms are described. These algorithms have numerical
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character and so have all imperfections residing to all nu-
merical methods and algorithms.

In this report a new approach for step-by-step symplec-
tification for the Lie algebraic methods are suggested. In
contrast to usual numerical approaches the way uses matrix
formalism for the Lie algebraic tools in symbolic mode.
This allows us to create very simple correction formulae
which guarantee the symplecticity properties in all orders
up to some hand-picked approximation order. These for-
mulae follow from linear algebraic equations which can be
solved in symbolic form easily. It should be noted two main
advantages of symbolic mode: the first of them is flexibility
and the second is a computational accuracy in high orders.
More over, all necessary computations (having been done
in advance) can be stored in a special database and used in
necessity.

2 MATHEMATICAL BACKGROUNDS

The Lie algebraic tools are usually used in so the called
polynomial presentation (see, e.g. [4]–[5]). In this presen-
tation the starting system Hamiltonian is expanded into a
sequence of homogeneous (over the phase vector X) poly-
nomials. Further this polynomial presentation is applied for
tensor presentation creation of designed high-order maps.
According to the matrix formalism for Lie algebraic meth-
ods (see, e.g. [6]) the high-order map is presented in the
form of a block-matrix, every block of which is a two-
dimensional matrix calculated in a symbolic form in ad-
vance.

2.1 General Layout of the Matrix Formalism
for Lie Methods

The motion equation for beam particles can be written in
the following general form:

dX
ds

= F(X,U,B, s), (1)

X is a phase vector, U = U(t) – a vector of control func-
tions, B – a vector of control parameter s– an independent
variable (e.g. the length of a reference orbit). For the initial
conditions one can write

X(s0) = X0, s ∈ [s0, S] , X0 ∈ M0, (2)

where M0 is an initial phase beam portrait, S – is a charac-
teristic length (e.g. the accelerator period). The right side
of the Eq. 2 can be written in the form of the following
series:

dX
ds

=
∞∑

k=0

P1k(U,B, s)X[k],
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where X[k] is so called Kronecker power of the k-th or-
der: X[k] = X ⊗ . . . ⊗ X︸ ︷︷ ︸

k times

. The matrices P1k can be easily

calculated using computer algebra codes (e.g. Maple V)
for different control elements. This matrices play a role
of bricks during the computer models construction. For
solving of the Eq. 3 the Lie algebraic methods are used
according to them one can write

X(X0,U,B, s) =
∞∑

k=0

M1k(U,B, s)X[k]
0 . (3)

The matrices M1k can be presented in the form

M1k = M11Q1k,

where Q1k are new matrices and M11 is the linear transfer
matrix generated by the Lie mapM, defined as the solution
of linear motion equations

dX
ds

= P11(U,B, s)X. (4)

The matrices Q1k can be calculated using the algorithms of
the matrix formalism.

Knowledge of symbolic presentation for P1k permits to
compute the matrices M1k or the matrices Q1k too. It
should be noted that knowledge of the symbolic presen-
tation of M1k, ∀k ≤ N (here N is an approximation or-
der) allows also to solve different problems of modeling
and optimization beamlines. Starting from the matrix for-
malism, one can solve different problems (for example, of
symmetry and invariants searching [7], synthesis of beam-
lines with desired characteristics [8], the problem of space
charge forces [9]). It is obvious that in practice the expan-
sion (3) should be truncated at some approximation order
N . But in this case the property of symplecticity is lost.

2.2 Symplectic Conditions for Block Matrices

In this paper, a new method to correct block matrices M1k

step-by-step is presented. The Jacobi matrix M(X) =
M(X; s | s0) for our Lie map M:

M(X) = ∂(M·X)/∂XT.

Here and in the following the dependence on the vectors
U,B and variable s is omitted. The starting point of the
correction algorithms is the symplecticity condition for the
Jacobi matrix M:

M(X)JMT(X) = J,

where J is a canonical symplectic matrix,

J =
(

O E

−E O

)
.

Here O and E are zero matrix and unit matrix correspond-
ingly. Using the matrix presentation for Lie maps the Ja-
cobi matrix M(X) can be written in the form

M(X) =
∞∑

k=1

M1k ∂X[k]

∂X∗ .

The properties of the Kronecker sum and product allows to
evaluate

M(X) =
∞∑

k=1

k−1∑
j=0

M1kX[j] ⊗ E⊗ X[k−j−1],

or (
M11

)∗
J0M11︸ ︷︷ ︸

k=l=1

+ (X ⊗ E + E ⊗ X)∗
(
M12

)∗
J0M

11︸ ︷︷ ︸
k=2, l=1

+

+
(
M11

)∗
J0M12 (X⊗ E + E ⊗ X)︸ ︷︷ ︸

k=1, l=2

+

+
∞∑

k,l=1
k+l>3

(
X�k

)∗ (
M1k

)∗
J0X�l = J0, (5)

where ⊗ is the Kronecker multiplication, and 	 is a new
operation defined according to the following rule

X�(k−1) =
k−1∑
j=0

X[j] ⊗ E ⊗ X[k−j−1].

As the equation (5) should be fulfilled for all phase vectors
X one can write the following sequence of the equations:(

M11
)∗

J0M11 = J0, (6)

(
X�1

)∗ (
M12

)∗
J0M

11 +
(
M11

)∗
J0M12X�1+

+
∑

k,l≥2

(
X�k

)∗ (
M1k

)∗
J0M1lX�l = 0. (7)

These equations are required symplecticity conditions of
truncated map in the matrix presentation.

3 SOLUTION OF THE SYMPLECTIC
CONDITIONS

3.1 The Basic Equations and Definitions

As it is known the matricant of the Eq. (4) can be presented
in the following form of the following operator exponent

M11(s | s0; P11) = exp
(
JP̃11

(
s | s0; P11

))
,

where P̃11 is a symmetric matrix dependent on the ”old”
matricant P11. It can be calculated with the help of lie alge-
braic tools. In particular, in the quasistationary case (when

the commutator is equal to zero: {
s∫

s0

P11(τ)dτ, P11(τ ′)} =

0) we have

P̃11(s | s0; P11) =

s∫
s0

P11(τ)dτ.

In the arbitrary case the matrix P̃11 can be calculated with
the help of the Magnus presentation. It is not difficult to
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demonstrate that this matrix will be symmetric in any case.
The symplecticity of the matrix M11 follows from the the-
ory of symplectic matrices and the Lie brackets properties.
The Eq. (7) generate the infinity chain of algebraic equa-
tions for block matrices M1k. It is not difficult to show that
the conditions for the matrix M12 are not depend on ele-
ments of the matrices M1k for k > 2. The rest of matrices
are fulfilled to the infinity chain of coupled equations.

Using the following presentation M1k = M11Q1k and
Q11 = E the Eq. (7) can be rewritten in the more simple
form

∞∑
k,l≥0

(
X�k

)∗ (
Q1 (k+1)

)∗
J0Q1 (l+1)X�l = 0. (8)

Both the Eq. (7) and the Eq. (8) are decomposed on the
following chain of the matrix equations:∑

k+l=m
m≥1

(
X�k

)∗ (
Q1 (k+1)

)∗
J0Q1 (l+1)X�l = 0. (9)

The elements of the matrices Q1j are the homogeneous
polynomials over components of the phase vector X. The
equations for these elements can be presented in the form of
linear algebraic equations, which can be solved using com-
puter algebra codes easily. Similar solutions can be stored
in a special data base and used as required.

3.2 The Example of the Corrected Matrices

As a demonstration example let consider the first equality
(9) (in the case of n = 1: X = (x, px)T)

(X⊗ E + E ⊗ X)∗
(
Q12

)∗
J0+

+ J0Q12 (X ⊗ E + E ⊗ X) = 0.

Denoting {Q12}ik = qik one can evaluate(
0 (2q11+q22)x+

(q12+2q23)px−(2q11+q22)x−
(q12+2q23)px

0

)
= 0.

Thus in our case we obtain a single scalar equation

(2q11 + q22)x + (2q23 + q12)px = 0,

or since that x, px are arbitrary we have:

2q11 + q22 = 0, q12 + 2q23 = 0. (10)

The equations (10) can be resolved for example with regard
to q22 and q23: q22 = −2q11, q23 = −q11/2. So the sym-
plecticity conditions for the second order will be fulfilled
automatically, if the matrix M12 has the form

M12 = M11 ·
(

q11 q12 q13

q21 −2q11 − 1
2q12

)
,

where qik are calculated according to the matrix formalism
[10]. It should be noted that these conditions are much

simpler of similar conditions for the elements of the matrix
M12. Indeed the corresponding conditions for elements of
the matrix M12 have the following form:

r11m22 − r21m12 + 2(r22m11 − r12m21) =0,

2(r11m23 − r21m13) + r22m12 − r12m22 =0,
(11)

where rik and mik are elements of the matrices M11 and
M12 correspondingly. As one can see from the (14) these
equations connects all elements of the matrix M12. Solu-
tion of the Eqs. (11) demands more logical difficulties, be-
cause similar equations confuse all elements of the matrix
M12. Up to table of symbols the Eqs. (11) coincide with
corresponding conditions in [10].

This approach was realized for some practical problems
of long time evolution of particle beams in cyclic accelera-
tors (including space-charge forces). Comparison of com-
puter experiments results demonstrates the necessary sta-
bility of this algorithm.
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