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Abstract

This reports presents a new algebraic approach to approx-
imating symmetries and invariants construction. Both in-
variants and symmetries are separated into dynamical and
kinematical ones. Additionally each type of symmetries
is separated into intrinsic and imposed symmetries. The
intrinsic symmetries are generated by the dynamical sys-
tem under study. The imposed symmetries ensure some
desired properties of the dynamical system. This approach
is very useful for optimal beam lines design problems. The
kinematical invariants are used as a nonlinear theoretical
probe. Such probes can be used for nonlinear effects in-
vestigation and control. Symmetries and invariants con-
structions procedure are based on the matrix formalism for
the Lie algebraic methods. This formalism allows to create
algebraic equations for determining block-matrices enter-
ing into the corresponding symmetries and invariants de-
scription. These equations can be solved in a symbolic
mode, and the corresponding results are included in a spe-
cial database. The algebraic approach is based on the Kro-
necker presentation of the Poincare-Witt basis for Lie alge-
bras. All necessary statements are proved. Some practical
applications for beam physics problems are discussed.

1 INTRODUCTION

It is known that such concept as emittance invariants has
been used in particle beam physics for a long time. At
first, this approach was developed for linear systems (the
Courant-Snyder invariant, the time-dependent invariants by
P.L.G.Leach, H.R.Lewis Jr.). In accelerator physics the
problem of invariants plays the special role because of
collective character of the object under study — particle
beams. Besides this the problem is complicated by nonlin-
ear aberrations which are inherent in any beamline. There
are some works devoted to calculation of these important
beam characteristics (see, e.g. [1]–[4]. In general case it is
impossible to evaluate explicit invariants. The first problem
discussed in this report is the problem of approximation in-
variants construction. The second is the problem of approx-
imation symmetries searching. These coupling is explained
their algebraic closeness. The knowledge of system sym-
metries is very important for design problems. They help
to design the beamline with desired characteristics. The ap-
proach for retrieval of nonlinear approximation invariants
is suggested in [1], [2]. But this approach is based on an in-
finite system of differential equations, which can be solved
only numerically. A Lie-theoretical treatment of nonlinear
beam dynamics has been given by Dragt [5] Here Lie the-
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ory is applied for investigation of the invariants–symmetry
problems for beamlines using the matrix formalism for Lie
algebraic methods [6].

2 MATHEMATICAL BACKGROUNDS

Dynamics of beam particles can be presented in the form
of Lie nonlinear transformation M in the form of time-
ordered exponential operator

M(t|t0) = T exp




t∫
t0

LF(τ)dτ


 , (1)

or the so called Magnus’s presentation

M(t|t0) = exp
(
LG(t|t0)

)
, (2)

where LF(τ) is a Lie operator associated with some func-
tion F(τ) = F(τ ;X,U,B), defining the motion equation
for beam particles

dX
dt

= F(t;X,U,B), (3)

where X ∈ X , U ∈ U , B ∈ B are a phase vector, a control
functions vector and a control parameters vector respec-
tively. The Eqs. (1), (2) define a dynamical system with
control and the operator M can be identified with the dy-
namical system itself. The new function G(t|t0) for the
Lie operator LG(t|t0) can be calculated using the continu-
ous analogue of the well known CBH-formula [6].

2.1 The Basic Definitions and Concepts

Let give the following definitions:

D e f i n i t i o n 1 A set of transformations τ : T 	→ T̂ ,
AX : X 	→ X̂ , AU : U 	→ Û , AB : B 	→ B̂ is called
a symmetry transformation of a dynamical system M, if it
guarantees the commutativity of the following diagram:

T × X × U × B M−−−−→ X	τ×AX×AU×AB

	AX

T̂ × X̂ × Û × B̂ M−−−−→ X̂

D e f i n i t i o n 2 Let A be a symmetry transformation for
the dynamical system M and A is a set of such transfor-
mations. Then a function I(X, t) is called a dynamical
invariant, if A ◦ I(X, t) = I(X, t), for some A ∈ A and a
kinematical invariants (compare with [3]), if A◦I(X, t) =
I(X, t), i.e. A ◦ I(X, t) = I(X, t) ∀A ∈ A.
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D e f i n i t i o n 3 Let a function I(X, t) be an invariant
under symmetry transformations, then it is called the in-
trinsic dynamical invariant, if these transformations are
generated by the dynamical system under study and the in-
trinsic kinematical invariants, if these transformations are
generated by some class of dynamical systems.

For example, the authors of the work [3] introduced such
kind of kinematical invariants for a class of Hamiltonian
systems.

Let LG be a Lie operator associated with some vector
function G(X, t). This operator can be considered as an
infinitesimal operator for transformation of some symme-
try.

D e f i n i t i o n 4 If some function F(X, t) defines the dy-
namical system according to the Eq. 3 and the function
G(X, t) defines a transformation N = exp(LG), and
there is the equality

{LF,LG} = LF ◦ LG − LG ◦ LF = 0,

then the transformation N = exp (LG) is called the sym-
metry transformation for the dynamical system (1)-(3).

It should be noted that instead of a single function G one
can consider a set of functions G satisfying the Def. 4.

2.2 The Approximate Invariant and Symmetry

In general case the retrieval of invariants and symmetries
is very complicated problem. Taking into account that usu-
ally the Lie map is found using perturbation presentation
we can redefine the conception of invariants and symme-
try. The corresponding definitions can be rewritten by the
following way. For an approximate symmetry one can for-
mulate

D e f i n i t i o n 5 Let LF and LG be Lie operators for
the dynamical system and the symmetry group correspond-
ingly and takes place an equality {LF,LG} = LH, where
H(X, t) =

∑
k≥0

Hk(X, t). Then, if Hk(X, t) ≡ 0 ∀k ≤ N

we shall tell that LG generates approximate symmetry of
the N -th order.

and for an approximate invariant

D e f i n i t i o n 6 Function I (N)(X, t) is called an ap-
proximate invariant of the N -th order, if LG ◦ I(N) =
=

∑
k≥N+1

Ik(X, t), where Ik are scalar homogeneous poly-

nomials of k-th order.

3 THE MATRIX FORMALISM FOR THE
PROBLEM

3.1 The Dynamic Invariants and Symmetries

Let the functions F(X, t) and G(X, t) admit the follow-

ing expansions F(X, t) =
∞∑

k=0

Fk(t)X[k] and G(X, t) =

∞∑
k=0

Gk(t)X[k], where X[k] is the Kronecker power of the

k-th order for the phase vector X [k] and Fk(t), Gk(t) are
two-dimensional matrices. Then using properties of the
Kronecker product and sum one can evaluate the commu-
tator from the Def. 5 and the following theorem can be
proved.

T h e o r e m 1 The function generates a symmetry of the
dynamical system (1)-(3) iff there are following equalities

GjF
⊕ j
0 =

∞∑
k=1

(
FkG

⊕ k
j−k − Gj−kF

⊕ j−k
k

)
,

1 ≤ k ≤ j, ∀j ≥ 1. (4)

Here A⊕ k = A⊕ (k−1)⊗E+E[k−1]⊗A is the Kronecker k-
multiple sum of some matrix A. the set of the equalities (4)
should be solved over the matrices Gk, k ≥ 0. In the case
of an approximate symmetry of N -th order these equalities
should be solved for all j ≤ N .

For the construction of defining relations for approxi-
mate invariants we should write the following expansion

for an invariant function: I(X, t) =
∞∑

k=0

Ik(t)X[k], where

Ik(t) are vector functions be subject to definitions. Accord-
ing to the matrix formalism [6] the invariance condition can
be written in the following differential form

dIk(t)
dt

+
k∑

j=1

P
jk(t)Ik(t) = 0, ∀k ≥ 0,

where P1k = Fk (see above) and

P
kj = P

1 (j−k+1) ⊕ P
(k−1)(j−1), j ≥ k.

The invariance condition can also be rewritten in the alge-
braic form:

I(X, t∗) = I(N−1(t∗|t) ◦ X, t) = I(I, t),

whereN−1(t∗|t) is an inverse operator for symmetry trans-
formation N (t∗|t), t∗ is some value of the independent
variable t, t∗ ≥ t. The matrix presentation of all our ob-
jects leads to the following chain of matrix equations:

Ik(t) =
k∑

j=0

(
T

jk(t|t∗)
)T

Ij(t∗),

where Tjk(t|t∗) are expansion matrices for the inverse op-
erator N−1(t∗|t):

N−1 ◦ X =
∞∑

k=0

T
1k(t)X[k],

and Tkk =
(
T11

)[k]
, Tjk =

∑
(

i1+...+ij=k
il≥1

)
j⊗

l=1

T1 i1 , k ≥ j.

It should be noted that matrices T1k can easily be calcu-
lated using the generalized Gauss’s algorithm:

T
11 =

(
N

11
)−1

, T
1k = −

k∑
j=1

T
11

N
1j

(
T

11
)
,
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and

N ◦ X =
∞∑

k=0

N
1k(t)X[k],

3.2 The Approximate Kinematical Invariants

In the case of beam physics problems it is more
preferable to use functions of moments M (k)(t) =∫
M(t)

f(X, t)X[k]dX instead of functions I(X, t). Here
M(t) is an image of an initial phase set M0 and f(X, t) is
a distribution function in the phase space for some t. From
the definition of moments one can write

M(k)(t) =
∫

M0

f0

(
N−1 ◦ X[k]

)
J(N )dX,

where J(N ) is the Jacobian for the transformation N . For
the conservative Hamiltonian systems we have J(N ) ≡ 1
and in this case we can be rewritten (using the matrix for-
malism):

M(k)(t) =
∞∑

j=k

T
jk(t|t0)M(j)(t0),

It should be noted that the problem of kinematical invari-
ants and symmetries is solved differently. Here we shall
consider an example of kinematical invariants. The con-
struction method for such kind of invariants for Hamilto-
nian systems was suggested in the work [3]. In general, for
this purpose we use the tool of Kronecker matrix operators
and Casimir operators for corresponding Lie algebra. In
particular, for kinematical invariants of linear symplectic
dynamical systems we have

I2k(M) = (−1)k
(
M[k]

2

)T

J
{k}M[k]

2 =

= (−1)kSp
(

M
{k}
2 J

{k}
)

= (−1)kSp
(
(M2J)k

)
,

where M2 = 〈X[2]〉 =
∫
M

f(X)X[2]dX and M[k]
2 = M2⊗

. . . ⊗ M2, {k} denotes the symmetrized Kronecker power
of the k-th order, M2 = M2MT

2 is a matrix of second
moments.

For nonlinear dynamical systems the appropriate kine-
matical invariants of 2N -th order – J2N is constructed in
the form (compare with [4])

J2N =
N∑

l=1

α
(2N)
l I2lJ2(N−l), J0 = 1, (5)

where α
(2N)
l are some constants which should be worked

out, I2l, l < N – kinematical invariants of corresponding
orders for linearized system. Note that I(2l) depends on
a distribution function f(X) (its centrality leads to equal-
ities I(2l+1) = 0), therefore parameters defining distribu-
tion functions affects values of J2N too. Using methods of
differential geometry one can approximate current phase

space set M(t) by some parameters (e.g. such parame-
ters as concavity degree, twisting degree and so on) in the
class of polynomials over these parameters. It is possible
to suggest the three steps algorithm of nonlinear invariants
construction:

Step 0. An initial distribution function is described as
the function of some parameters. Polynomial approxima-
tions for linear kinematical invariants I2j j ≤ N are cal-
culated as function both of distribution function parameters
and beamline parameters. Here it is possible to present the
distribution function as a polynomial function of geometric
and topological properties of the current distribution func-
tion.

Step 1. A set of formal nonlinear invariants is determined
according to the Eq. (5). As a result the desired nonlinear
invariants J2N is the polynomial of 2N -th order with re-
spect to these parameters.

Step 2. One should build a combination of the kinemati-
cal invariants for linearized system I2j , j ≤ N . This com-
bination should not depend on dynamical parameters up to
some order.

The described approach gives a flexible and effective
tool for investigations of nonlinear aberrations. The most
part of necessary computing operations can be evaluated
using computer algebra codes on some general assump-
tions. Then this prepared information is used for numerical
calculations. As a result one can construct a probe for test-
ing nonlinear effects of different nature. We should note
that this probe is built on the measured physical variables
because the linear invariants are functions of partial emit-
tances ε2

x, ε2
y, . . ..
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