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Abstract

We describe the simulation of a quantum relativistic
wavepacket propagating in electric and magnetic fields. We
start from first principles in QED with the intent of explor-
ing the effects of spin, extended wavepackets, and radia-
tion reaction on particle motion. (This initial work neglects
radiation reaction and anti-particle effects). In the numer-
ical simulation of wavepackets we use unitary integrators,
adapted to particle propagation in a background (though
possibly time-dependent) vector potential.

1 INTRODUCTION

The use of symplectic integrators in the computation of
charged particle classical orbits allows the numerical sim-
ulation of trajectories preserving the canonical structure of
classical mechanics; high-order symplectic integrators may
be systematically produced by methods such as those intro-
duced by Ruth, Neri, Forest, Yoshida, Suzuki, and others
[1]. But the classical (Hamiltonian) dynamics of particle
motion is of course only an approximation (presumably)
describing the time-dependent expectation values of appro-
priate operators with respect to the quantum state of the
relativistic particle.

New issues for particle motion, of both a fundamental
and practical nature, arise within the framework of quan-
tum theory. For instance, dissipation from radiation reac-
tion, which is not generated by a Hamiltonian vector field,
is a significant process in the context of synchrotron radi-
ation. While classical dissipative processes may be gener-
ated from non-Hamiltonian vector fields [2], the classical
theory of radiation reaction for point particles is inconsis-
tent (e.g. it gives acausal and runaway solutions), and so
the correct model of classical radiation reaction is an open
question. One should therefore use the quantum theory of
radiation reaction to determine both the correct classical
limit and quantum corrections to that limit.

Of course, even before considering radiation reaction
(which does not appear until third order in QED perturba-
tion theory) there are uniquely quantum phenomena arising
at lower orders that may give significant corrections to the
long-time dynamics of charged particles moving in back-
ground electric and magnetic fields. This includes both
the inßuence of spin, and the fact that evolving quantum
wavepackets are extended in space and thus depend on the
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values of the background fields in the entire region that the
wavepacket occupies.

In this paper, we describe our method for simulating the
quantum dynamics of charges moving in background fields
neglecting, for the present, higher order effects like radia-
tion reaction. We make use of unitary integrators to ensure
consistent quantum dynamics of the particle state. The next
stage following this preliminary work is to move these sim-
ulations onto parallel computing architectures where we
can study in detail particle quantum dynamics in typical
magnetic fields.

2 RELATIVISTIC WAVEPACKETS

We shall consider one-particle states that are a superpo-
sition of momentum states |p, s" = (2Ep)1/2 �a�s (p) |vac" ,
where s = ± is the spin polarization in the ±�z direction,
and �a

�
s (p) is the one-particle creation operator. (We set

h̄ = c = 1, soEp is the energy). Standard relativistic quan-
tum field theory, unlike nonrelativistic quantum mechanics,
does not have a position operator �x (t) . Instead, computing
the motion of a quantum relativistic particle requires first
evolving the particle state, and then computing the expecta-
tion values of appropriate field-observables. For example,
the charged-density expectation value #f (t)| �0 (x) |f (t)"
is proportional to the probability density for a single par-
ticle, where �µ (x) = ψ̄ (x) γµ �ψ (x) is the current density
for the Dirac field �ψ (x) in the Schrödinger picture, γµ are
the Dirac matrices (in the Dirac-Pauli representation), and
the adjoint is defined by ψ̄ (x) ≡ �ψ� (x) γ0.

Strained crystals can produce spin-polarized electrons;
we will assume that a typical electron is ejected with its
spin polarized in the +�z-direction and with its wavepacket
state given as

|f0" =
!
dµ (p) f0 (p) |p,+" .

Generalizing to unpolarized states is straightforward.
f0 (p) is a normalized Gaussian centered around p0 of mo-
mentum space width λp. For brevity we define dµ (p) =

(2π)
−3 (2Ep)

−1/2
d3p.We then boost by Λ = Λ (p̄) (with

|p̄| % |p0|) in the +�z-direction producing the relativistic
electron state

|f" = �U (Λ) |f0" =
!
dµ (p) f (p) |p,+" ,

where f (p) = f0
"
Λ−1p

#
is the boosted packet centered

around momentum p̄. �U (Λ) is the unitary operator gener-
ating the boost Λ in Hilbert space, and we have used the
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Lorentz invariance of the measure: dµ
"
Λ−1p

#
= dµ (p).

Note that |f" is nearly a helicity eigenstate up to corrections
of order |p0| / |p̄|& 1.

3 COMPUTING POSITION, CURRENT,
AND SPIN EXPECTATION VALUES

So long as the single particle theory is adequate, in other
words, so long as pair creation is negligible, we may drop
the anti-particle part of the field �ψ (x) , and write

�ψ (x)→ �ψ(+) (x) =
$
r

!
dµ (p) eip·xur (p) �ar (p) .

ur (p) are positive energy Dirac spinors with normalization
u
�
r (p)ur! (p) = 2Epδrr! . In the Dirac-Pauli representa-

tion of the gamma-matrix algebra the spinors u± are

u± (p) = (γµpµ +m)χ±

where χ+ = (1, 0, 0, 0) and χ− = (0, 1, 0, 0) give±�z-spin
for a particle at rest.

The spinor-valued configuration space function
wavepacket is given by

fa (x,t) ≡ #vac| �ψ(+)a (x) |f (t)"
=

!
dµ (p) eip·xf (p, t)u+ (p)

= (2π)−3
!
dpeip·xϕa (p, t) , (1)

where a = (1, ...,4) is a spinor index, and |f (t)" =
�U (t) |f" is the time-evolving state in the Schrödinger pic-
ture ( �U (t) is the unitary time-evolution operator). We have
defined

ϕa (p, t) = (2Ep)
−1/2

f (p, t)u+ (p) .

From the normalization of ur (p) it follows that
ϕ� (p, t)ϕ (p, t) = |f (p, t)|2 .

In terms of f (x, t) , the four-current expectation value is

#f (t)| �µ (x) |f (t)" = f̄ (x, t) γµf (x, t) .

Using γ0γ0 = 1 the charge density is

#f (t)| �0 (x) |f (t)" = f � (x, t) f (x, t) ,

and other expectation values may be similarly computed.
The initial wavepacket |f0 (p) |2 (with p0 = 0) is plotted
in Fig. 1a. The charge-probability density #f | �0 (x) |f"
for the wavepacket after a boost of β = v/c = .95 in
the �z-direction is plotted in Fig. 1b. The figures show the
wavepackets intersection with the px=0 and x = 0 planes,
respectively. Notice the Lorentz contraction generated ßat-
tening in the �z-direction of the boosted wavepacket .

Figure 1: Fig. 1a shows |f0 (p)|2 for an initial Gaus-
sian wavepacket of average momentum p0 = 0. Fig. 1b
shows the charge-probability density

%
f |�0 (x) |f& for the

wavepacket after a boost of β = .95 in the �z-direction.

4 EQUATIONS OF MOTION FOR
SINGLE PARTICLES IN

TIME-DEPENDENT FIELDS

The (functional) Schrödinger equation is

i∂t |f (t)" = �H (t) |f (t)" , (2)

where

�H (t) =

!
dx �ψ

�
(x)HD (x, t) �ψ (x)

=

!
dx �ψ

�
(x) (A (p) +B (x, t)) �ψ (x)

≡ �A+ �B (t)

is the field Hamiltonian, and HD (x, t) = A (p) +
B (x, t) , with A (p) = γ0

"
γipi +m

#
and B (x, t) =

eγ0γµAµ(x, t), is the matrix-valued Dirac Hamiltonian
(p = −i∇). We use hats, e.g. �H, to distinguish field-
operators from quantum mechanical operators, e.g. HD.

When it is valid to restrict to the one particle sector, we
may show by operating from the left with #vac| �ψ(+)a (x) on
both sides of Eq. 2 that f (x, t) satisfies the Dirac equation:

i
∂

∂t
f (x, t) = HD (x, t) f (x, t) ,

whose formal solution is

f (x, t) = U (t) f (x)

U (t) = Te−i
' tHD(x,t!)dt! .

T denotes time-ordering. For simplicity, we set t0 = 0,
and write f (x) = f (x, t0) and U (t) = U (t, t0) .

5 TIME-INDEPENDENT EVOLUTION IN
EXTENDED HILBERT SPACE

We now apply to Hilbert space the analog of extend-
ing phase space with t and pt as canonically conjugate
dynamical variables. This allows us to make use of
higher-order unitary integration schemes developed for
time-independent Hamiltonians. Promoting t to an oper-
ator �t, we introduce its canonical momentum �pt such that
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[�t, �pt] = ih̄ and [�t, �ψ (x)] = 0. The operator �t has eigen-
states |t" such that �t |t" = t |t" , and the extended Hilbert
space K is spanned by |f, t" = |f" ⊗ |t" . Since �pt is con-
jugate to �t, it generates time translations via

e−i�ptε |t" = |t+ ε" .

If B is a time-dependent function of field operators �ψ, in
the extended quantum theory we have B( �ψ, t) → B( �ψ, �t)
and therefore

B( �ψ, �t) |f, t"" = B( �ψ, t") |f, t"" .
Evolution with respect to the new parameter τ in the

Hilbert space K is generated by the τ -independent Hamil-
tonian �K = �pt+ �H. The extended (functional) Schrödinger
equation becomes

i∂τ |f, t" = �K |f, t"
with solution

|f, t; τ" = e−i �Kτ |f, t" . (3)

Now it follows from d�t/dτ = −ih̄−1[�t, �K] = 1 that
�t |f, t" = τ |f, t" . Hence, the label τ in Eq. 3 is unnec-
essary and we may write |f, t" = e−i �Kt |f" .

6 UNITARY INTEGRATORS

Defining ε = t/N (N an integer), we may use leap-frog
factorization to write

e−i �Kε = e−iε�pt/2e−iε �A/2e−iε �B(�t)e−iε �A/2e−iε�pt/2

= e−iε�pte−iε �A/2e−iε �B(�t+ε/2)e−iε �A/2, (4)

plus O "ε3# corrections. In writing Eq. 4 we use

eiε�pt/2g
(
�ψ, �t
)
e−iε�pt/2 = g

(
�ψ, �t + ε/2

)
, and assume

that �A is independent of �t so that [�pt, �A] = 0.
Concatenating Eq. 4N times (using t = Nε), we find

e−i �Kt = e−it�ptei
ε
2
�A

*
N+
n=1

e−iε �Ae−iε �B(�t+(n−
1
2 )ε)

,
e−i

ε
2
�A.

This expression is organized to minimize subsequent com-
putations. Therefore, 2nd-order equations of motion for the
one-particle spinor wavepacket are

f (x, t) ≡ #vac| �ψ(+) |f, t" = #vac| �ψ(+)e−i �Kt |f"

= ei
ε
2A

*
N+
n=1

e−iεAe−iεB((n−
1
2 )ε)

,
e−i

ε
2Af (x)

Time-translation invariance of the vacuum gives
#vac| e−it�pt = #vac| , and t0 = 0 implies
�t |f" = t0 |f" = 0. Leap-frog factorization therefore
yields the ‘mid-point’ rule of evaluating the (possible)

time-dependent matrix B at B (t+ ε/2) during each ε
time step between t to t+ ε.

We may now generalize to higher-orders by standard
methods. For example, Yoshida’s symmetric 5th-order fac-
torization implies

e−i �Kε = e−iε�ptei
ε1
2
�A
(
e−iε1 �Ae−iε1 �B(�t+ε−

ε1
2 )
)

×
(
e−i(ε0+ε1)

�A
2 e−iε0 �B(�t+

ε
2)
)

×
(
e−i(ε0+ε1)

�A
2 e−iε1

�B(�t+ ε1
2 )
)
e−i

ε1
2
�A

plus O "ε5# errors for each ε step, with ε1 =

ε/
"
2− 21/3# > ε and ε0 = −21/3ε1 < 0. Because

t+ ε1/2 > t+ ε/2 > t+ ε− ε1/2, we get the well-know
prescription of evaluating B at successive ‘backward-in-
time’ steps during each interval [t, t+ ε] [3]. The operator
e−iε1 �A moves the state forward by ε1 into the next interval
where this ‘time-reversed’ pattern is repeated. Concate-
nating this result N times gives a 4th-order unitary inte-
grator for the interval [0, t] . Arbitrary higher-(even)-order
integrators may be constructed by following Suzuki’s [4]
method combined with the extended Hilbert space struc-
ture outlined above.

7 CONCLUSIONS

Use of the above unitary integrators reduces simula-
tion of the single particle wavepacket evolution to a se-
quence of alternating fast Fourier transforms (FFTs) and
matrix multiplications. Each FFT diagonalizes the matrix-
exponentials in either configuration or momentum space,
giving separate 4 × 4 matrix multiplications of the dis-
cretized spinor wavepacket fa (x) at every lattice point.
The matrix-exponentials may be efficiently computed us-
ing scaling and squaring methods [2].

Work is currently in progress testing these methods on
small lattices. On large lattices with small time steps, this
problem quickly becomes numerically challenging, but the
general structure of these simulations should lend itself to
parallel computation.
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