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Abstract

We describe the simulation of a quantum relativistic
wavepacket propagating in el ectric and magnetic fields. We
start from first principlesin QED with the intent of explor-
ing the effects of spin, extended wavepackets, and radia-
tion reaction on particle motion. (Thisinitial work neglects
radiation reaction and anti-particle effects). In the numer-
ical simulation of wavepackets we use unitary integrators,
adapted to particle propagation in a background (though
possibly time-dependent) vector potential.

1 INTRODUCTION

The use of symplectic integrators in the computation of
charged particle classica orbits allows the numerical sim-
ulation of trgjectories preserving the canonical structure of
classical mechanics; high-order symplectic integrators may
be systematically produced by methods such asthoseintro-
duced by Ruth, Neri, Forest, Yoshida, Suzuki, and others
[1]. But the classica (Hamiltonian) dynamics of particle
motion is of course only an approximation (presumably)
describing the time-dependent expectation values of appro-
priate operators with respect to the quantum state of the
relativistic particle.

New issues for particle motion, of both a fundamenta
and practica nature, arise within the framework of quan-
tum theory. For instance, dissipation from radiation reac-
tion, which is not generated by a Hamiltonian vector field,
is a significant process in the context of synchrotron radi-
ation. While classica dissipative processes may be gener-
ated from non-Hamiltonian vector fields [2], the classicd
theory of radiation reaction for point particlesis inconsis-
tent (e.g. it gives acausa and runaway solutions), and so
the correct model of classica radiation reaction is an open
guestion. One should therefore use the quantum theory of
rediation reaction to determine both the correct classica
limit and quantum corrections to that limit.

Of course, even before considering radiation reaction
(which does not appear until third order in QED perturba-
tion theory) there are uniquely quantum phenomena arising
at lower orders that may give significant corrections to the
long-time dynamics of charged particles moving in back-
ground electric and magnetic fields. This includes both
the influence of spin, and the fact that evolving quantum
wavepackets are extended in space and thus depend on the
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values of the background fieldsin the entire region that the
wavepacket occupies.

In this paper, we describe our method for simulating the
quantum dynamics of charges moving in background fields
neglecting, for the present, higher order effects like radia-
tion reaction. We make use of unitary integrators to ensure
consistent quantum dynamics of the particle state. The next
stage following this preliminary work isto move these sim-
ulations onto parallel computing architectures where we
can study in detail particle quantum dynamics in typical
magnetic fields.

2 RELATIVISTIC WAVEPACKETS

We shall consider one-particle states that are a superpo-
sition of momentum states |p, s) = (2E,)"/* 4! (p) |vac),
where s = =+ isthe spin polarization in the +2 direction,
and d; (p) is the one-particle creation operator. (We set
h = ¢ =1, 50 E}, istheenergy). Standard relativistic quan-
tum field theory, unlike nonrel ativisti c quantum mechanics,
does not have a position operator & (¢) . Instead, computing
the motion of a quantum relativistic particle requires first
evolving the particle state, and then computing the expecta-
tion values of appropriate field-observables. For example,
the charged-density expectation value (f (¢)| 7° (x) | f (1))
is proportional to the probability density for a single par-
ticle, where 7 (x) = ¢ (x) v*¢ (x) is the current density
for the Dirac field ¢ (x) in the Schrodinger picture, 4+ are
the Dirac matrices (in the Dirac-Pauli representation), and
the adjoint is defined by ¢ (x) = ¢ (x)7°.

Strained crystals can produce spin-polarized eectrons;
we will assume that a typical electron is gected with its
spin polarized in the +2-direction and with its wavepacket
state given as
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Generalizing to unpolarized states is straightforward.
Jo (p) isanormalized Gaussian centered around p, of mo-
mentum space width A,,. For brevity we define di (p) =
(2m) "% (2E,) /2 d3p. Wethen boost by A = A (p) (with
|B| > |pol) in the +2-direction producing the relativistic
electron state
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where f (p) = fo (A~'p) isthe boosted packet centered

around momentum p. U (A) is the unitary operator gener-
ating the boost A in Hilbert space, and we have used the
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Lorentz invariance of the measure: du (A~'p) = du (p).
Notethat | f) isnearly ahelicity eigenstate up to corrections
of order [po| / [p| < 1.

3 COMPUTING POSITION, CURRENT,
AND SPIN EXPECTATION VALUES

So long asthe single particle theory is adequate, in other
words, so long as pair creation is negligible, we may drop
the anti-particle part of thefield ¢ (x) , and write

P (x) =P (x) =) / dp (p) e®*u, (p) , (p).

u, (p) arepogitiveenergy Dirac spinorswith normalization
u; (p) up (P) = 2Ep6,,. In the Dirac-Pauli representa-
tion of the gamma-matrix agebrathe spinors u.. are

ut (p) = (V'pu +m) x+

where . = (1,0,0,0) and x— = (0, 1,0, 0) give +2-spin
for aparticle a rest.

The spinor-valued configuration space function
wavepacket is given by

fa (x,t) = (vac| P57 (x) | (1))
= / dp (p) e®™>f (p,t) us (p)

= (2m)~° / dpe™®*¢, (p,t), ey

where ¢ = (1,...,4) is a spinor index, and |f (¥)) =
U (t)|f) isthe time-evolving state in the Schrodinger pic-
ture (U (t) isthe unitary time-evolution operator). We have
defined

¢a (pt) = (2Bp) "% f (,t) uy (p).

From the normalization of wu,.(p) it follows tha

ot (p.t) o (p,t) = |f (P 1)

Intermsof f (x,t), thefour-current expectation valueis

(fOI ) @©) = F (09" f (x1).

Using v°+4" = 1 the charge density is

FOIP ) O) = f (x0) f(x,1),

and other expectation values may be similarly computed.
The initid wavepacket |f; (p) |? (with pg = 0) is plotted
in Fig. 1a. The charge-probability density (f|7° (x) |f)
for the wavepacket after a boost of 3 = v/c = .95 in
the 2-direction is plotted in Fig. 1b. The figures show the
wavepackets intersection with the p,,.=0 and x = 0 planes,
respectively. Notice the Lorentz contraction generated flat-
tening in the 2-direction of the boosted wavepacket .

Fig.1b

Figure 1: Fig. 1a shows |fy (p)|* for an initia Gaus-
sian wavepacket of average momentum py = 0. Fig. 1b
shows the charge-probability density ( f|j° (x)|f) for the
wavepacket after aboost of 8 = .95 in the Z-direction.

4 EQUATIONSOF MOTION FOR
SINGLE PARTICLESIN
TIME-DEPENDENT FIELDS

The (functional) Schrodinger equationis
0 |f (£) = H(®)|f (t), @

where
@) = / dx ' (x) Hp (x,1) 9 (x)

_ / dx ' (x) (A(p) + B (x,1)) ¢ (x)
=A+B(t)

is the fiedld Hamiltonian, and Hp (x,t) = A(p) +
B(x,t), with A(p) = 7° (v'p; +m) and B (x,t) =
ey’ " A, (x,t), is the matrix-valued Dirac Hamiltonian
(p = —iV). We use hats, eg. H, to distinguish field-
operators from quantum mechanical operators, e.g. Hp.
When it is valid to restrict to the one particle sector, we
may show by operating from theleft with (vac| ¥{ (x) on
both sidesof Eq. 2that f (x, t) satisfiesthe Dirac equation:
0

Zaf (Xv t) = Hp (th) f(Xv t)a

whose formal solution is

[ =U(@)f(x)
U (t) = Tet I ot

T denotes time-ordering. For simplicity, we set ¢, = 0,
and write f (x) = f (x,to) and U (t) = U (¢,t0) -

5 TIME-INDEPENDENT EVOLUTION IN
EXTENDED HILBERT SPACE

We now apply to Hilbert space the analog of extend-
ing phase space with ¢ and p; as canonically conjugate
dynamica variables. This adlows us to make use of
higher-order unitary integration schemes developed for
time-independent Hamiltonians. Promoting ¢ to an oper-
ator ¢, we introduce its canonical momentum p; such that
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[t,p] = ih and [{,4) (x)] = 0. The operator  has eigen-
dtates |t) such that ¢ |t) = ¢|t), and the extended Hilbert
space K isspanned by |f,t) = | f) ® |t) . Since p; is con-
jugate to £, it generates time tranglations via

e e ) = |t 4¢€).

If B is atime-dependent function of field operators ’LZJA, in
the extended quantum theory we have B(i),t) — B(4,t)
and therefore

B, ) |f,t') = B, ) |£.1).

Evolution with respect to the new parameter T in the
Hilbert space K is generated by the 7-independent Hamil-
tonian K = p,+ H. Theextended (functional) Schrodinger
equation becomes

i0- | f,t) :K|fvt>
with solution
ft57) = e KT |f 1) ©)
Now it follows from di/dr = —ih~'[i, K] = 1 that

t[f,t) = 7|f,t). Hence, the label 7 in Eq. 3 is unnec-
essary and we may write | f,t) = e Kt |f) .

6 UNITARY INTEGRATORS

Defining e = t/N (N aninteger), we may use leap-frog
factorization to write

efif(s _ efis;ﬁt/2871'514/2871'5]3’({)efisA/Qefisﬁt/Q
— efis;ﬁtefisA/QefisB’(tAJrs/Q)efisA/Qv 4
plus O (e3) corrections. In writing Eq. 4 we use

eicht/2 (1/1 f) —iep/2 = ¢ (z[;,ﬂs/?) and assume
that A isindependent of ¢ so that [p;, A] = 0.
Concatenating Eg. 4 N times (usingt = N¢), wefind

N

e*iKt ztpte 5 [H

zsA —ie B( (t+(n—1 )s)‘| efz%A.

This expression is organized to minimize subsequent com-
putations. Therefore, 2"?-order equations of mation for the
one-particle spinor wavepacket are

(vacl | f,1) = (vac| §Pe | f)
% [H efzsA —ieB((n—13%)e) ‘| e*i%Af (X)

Time-trandation invariance of the vacuum gives
(vacle~®Pt = (vac|, and t;, = 0 implies
t|f) = to|f) = 0. Leap-frog factorization therefore
yields the ‘mid-point’ rule of evduating the (possible)

fxt)=

time-dependent matrix B at B (t + ¢/2) during each ¢
time step between ¢t to ¢ + .

We may now generdize to higher-orders by standard
methods. For example, Yoshida's symmetric 5¢"-order fac-
torization implies

efiKs —_ efisptei%LA (efislAefislB(ﬂksf%L))
« (efi(soJrsl)éefisoB(t:k%))

% (efi(so+€1)éefislé(f+%]-)> i TA

plus O () errors for each ¢ step, with & =
e/ (2-2Y%) > eand ey = —2Y35; < 0. Because
t+e1/2>t+¢/2>t+¢e—e1/2, weget the well-know
prescription of evaluating B at successive ‘backward-in-
time' steps during each interval [t, ¢ + ¢] [3]. The operator
e~ 14 moves the state forward by ¢, into the next interval
where this ‘time-reversed’ pattern is repeated. Concate-
nating this result N times gives a 4**-order unitary inte-
grator for the interval [0, ¢] . Arbitrary higher-(even)-order
integrators may be constructed by following Suzuki’s [4]
method combined with the extended Hilbert space struc-
ture outlined above.

7 CONCLUSIONS

Use of the above unitary integrators reduces smula
tion of the single particle wavepacket evolution to a se-
quence of alternating fast Fourier transforms (FFTs) and
matrix multiplications. Each FFT diagonalizes the matrix-
exponentias in either configuration or momentum space,
giving separate 4 x 4 matrix multiplications of the dis-
cretized spinor wavepacket f, (x) a every lattice point.
The matrix-exponentids may be efficiently computed us-
ing scaing and squaring methods [2].

Work is currently in progress testing these methods on
small lattices. On large lattices with smdl time steps, this
problem quickly becomes numerically challenging, but the
general structure of these simulations should lend itself to
parallel computation.
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