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Abstract

RF phase modulation can be used to measure the beam
transfer function in the study of wake field, machine
impedance, and the characteristics of collective instabil-
ities. The effect of rf phase modulation can be under-
stood by employing the Hamiltonian analysis of resonance
structure.  For particle motion with a zero synchronous
phase angle, the resonance strength can be analytically
evaluated. This paper calculates and tabulates resonance
strength functions with non-zero rf synchrotron phase an-
gles. The expansion of the normalized off-momentum co-
ordinates in action-angle phase space coordinates is de-
rived. Our results are compared with that obtained from the
canonical perturbation method. Implication of our work in
the beam transfer function measurementswill be discussed.

1 INTRODUCTION

Synchrotron motion of particles in accelerators in-
evitably experiences perturbation from rf phase noise,
power supply ripple, etc, which can cause rf phase mod-
ulation. Meanwhile, rf phase modulation can also be used
to measure the beam transfer function in the study of wake-
field, machine independence, collective beam instabilities.
Therefore, study of rf phase modulation becomes impor-
tant in some cases. Experiments and theory analysis of
rf phase modulation with a zero synchrotron phase angle
have been reported in the references [1, 2]. RF phase
modulation can be understood with Hamiltonian analysis
of resonance structure. Although analytical analysis for rf
phase modulation with a zero synchrotron phase angle has
been obtained, it is difficult to go further with the same
approach in the case of non-zero synchrotron phase angle.
Then, a numerical method is used to obtain the resonance
strength, which is tabulated in the appendix. Comparison
with canonical perturbationis given.

This paper goes as follows: Section 2 gives derivation
and expansion of the normalized off-momentum coordinate
in action-angle phase space coordinates. Section 3 gives
comparison with the analytical result in the case of zero
phase angle and canonical perturbation with non-zero syn-
chrotron phase angle. Then Conclusionis given in Section
4.
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2 HAMILTONIAN RESONANCE
STRUCTURE

The synchrotron Hamiltonian of a single particle in the
normalized phase-space coordinatesis [3]
n

Hy = 5P* 4 fhlcos o = cosy + (6= 6x)sin ],
where P is a normalized off-momentum coordinate, ¢ is
the phase angle, ¢ is the synchronous phase angle, and
Vsyn Serves as the independent variable (or time variable).
Here§ isthe orbit angle around the synchrotron, and v gy, is
the synchrotron tune at ¢, = 0. Without loss of generality,
we assume np < 0 hereafter. Since the Hamiltonian H
is‘time” independent, it is a constant of motion. Similarly,
the action, defined as

J = L%Pd@
2

isaalso a constant of motion. Expressing the Hamiltonian
Hy as a function of the action J, we find the amplitude
dependent synchrotron tune becomes Q ;(J) = 0Hy/dJ.
With the generating function,

¢
Fa(o.) = [ Pio,
0
angle coordinateis

_OF ¢ de
w—w—Qs(J)/o P
In the presence of a harmonic rf phase modulation, the
Hamiltonian becomes H = Hy + H,, where

Hy = vpaP cos(vmB + xo0)

is the perturbation term. Here, v,,, a, and x, are the ra-
tio of the rf phase modulation tune to vy, , the modulation
amplitude, and the phase factor.

To study the effect of rf phase modulation on particle
motion, We can expand the normalized off-momentum co-
ordinate in the action-angle variables as

P = i FalJ)e™,

n=-—oo
where

1 27 )
n(J) = %/O Pe~ "™ di.

Since P isreal, we have f_,, = f}. Using the identity,
Pdy = Q4d¢p, we obtain

fn(J) = Qz—g) 7{ e~ dp.
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Because P is an odd function, all even harmonics vanish.

When the modulation tune is close to an odd mul-
tiple of synchrotron tune, i.e. v,, ~ (2n + 1) (in
unit of vgyy,), Using the expansion of phase-space coordi-
nate in action-angle coordinates and neglecting those non-
resonance terms, the Hamiltonian becomes

H= H()(J) + me2n+1 COS((2TL + 1)’[/) — I/mo — Xo)

. Therefore, after we know the strength of f, 1, we can
analyze the system with rf phase modulation. The tablein
the appendix gives such resonance strength with different
synchrotron phase angle.

3 COMPARISON

This section compares the resonance strengths obtained
from the exact canonical transformation and perturbation
expansion.

3.1 Analytical method for a zero synchrotron
phase angle

The Hamiltonian with a stationary synchrotron motion
is:

Hy P2+2sm2 ¢

The expansion of P in Fourier harmonics of 1 is given
by [3]

~~ —\/ﬁsinw—i— (\/(33)3 sin3y + - -

The Figure 1 show the difference between this formula
and numerical calculation for the same order, f1.
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Figure 1: theratio of the first order resonance strength ob-
tained by analytical and numerical method

3.2 Canonical perturbation for non-zero syn-
chrotron phase angles
For a Hamiltonian with non-zero synchrotron phase an-

gle, we can expand the phaseangle at ¢ <. Let ¢ = ¢ + ¢,
the Hamiltonian becomes

COS P (

1 1
5 (@ — —tang.p’ — —' 4+

1
H=_-P?
2 T 3 12

Choosing the generating function

COS
VIESE] 5

Fl(ébﬂ/J):_ 2

we find the normal ized off-momentum coordinate as P =
2J sin | cos ¢>5| and the new Hamiltonian as

= Jy/|cosos| —

x (cos 3 + 3 cos 1/))

|cos¢5|4 tan ¢g.J 2 x
Zeost 4+ -

Using the generating function,

FZ(’L/J’I)

we get conjugate phase space coordinates as

=Yl + Gs(I)sin3¢ + G1(I) sin v

J = %_I+3G3( )cos 3y + G1(I) sinp,
)= %—5}2 =1+ 3G%4(I) cos 3¢ + G (I) sin .

For thefirst order, we choose

V2 tantp I3

V2 tan 2
4 | cos |t

Gq(I) = 2 ;
10 36 | cos gy |1

Gs(I) =

to cancel the term with J3. Thus the normalized off-

momentum becomes

P = —|cost|TV2I(sine) + %3G3(—sin2w

+sin4y) + 4—1[3G1(— sin 2¢)). Q)

Comparison of resonance strengths obtained from the
canonical perturbation and the exact canonical transforma-
tion obtained by numerical integration is shown in Figure
1. Theresults are tabulated in Tables 1-3.

4 CONCLUSION

For analytical analysis in the case of a zero synchrotron
phase angle and canonical perturbation in the case of non-
zero synchrotron phase angle, they are very good approx-
imation to the first order when the Hamiltonian values are
small. When the Hamiltonian value is large, the perturba-
tion expansion can overestimate the resonance strength up
to 30%.
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The beam transfer function method measures the re-
sponse of the beam under the influence of harmonic of
phase modulation. The beam detection system measures
essentially the dipole moment of the beam distribution. The

dipole moment depends on effects of nonlinear detuning, T?O ) 7£E-03 0 29]20%_03 0 15?:5-04 > 6700
streng’Fh of parameter resonances, Wakefidd and potential ’ .1.612' '_0.2072. 0.'252E-Olz' ’
well dlstort|lon, etc. Accgrate calculation of known effects 180 | -0.114E-02 | 0.669E-03 | -0.193E-03 | 2.157
of rf potential well provides us a means to study Fhe un- 1604 0254 0.366E-01
Sinsct’;’i"l;‘uﬁr;’nb'emswd‘asme wake field and potential well |55 53 T 0.:641E-03 | -0.127E-03 | 2.331
: 1557 -0325i | 0.594E-01i
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