
Resonance Strength for the Synchrotron Hamiltonian
with RF Phase Modulation∗

Yunkai Zhang, S.Y. Lee, Indiana University, USA
Abstract

RF phase modulation can be used to measure the beam
transfer function in the study of wake field, machine
impedance, and the characteristics of collective instabil-
ities. The effect of rf phase modulation can be under-
stood by employing the Hamiltonian analysis of resonance
structure. For particle motion with a zero synchronous
phase angle, the resonance strength can be analytically
evaluated. This paper calculates and tabulates resonance
strength functions with non-zero rf synchrotron phase an-
gles. The expansion of the normalized off-momentum co-
ordinates in action-angle phase space coordinates is de-
rived. Our results are compared with that obtained from the
canonical perturbation method. Implication of our work in
the beam transfer function measurements will be discussed.

1 INTRODUCTION

Synchrotron motion of particles in accelerators in-
evitably experiences perturbation from rf phase noise,
power supply ripple, etc, which can cause rf phase mod-
ulation. Meanwhile, rf phase modulation can also be used
to measure the beam transfer function in the study of wake-
field, machine independence, collective beam instabilities.
Therefore, study of rf phase modulation becomes impor-
tant in some cases. Experiments and theory analysis of
rf phase modulation with a zero synchrotron phase angle
have been reported in the references [1, 2]. RF phase
modulation can be understood with Hamiltonian analysis
of resonance structure. Although analytical analysis for rf
phase modulation with a zero synchrotron phase angle has
been obtained, it is difficult to go further with the same
approach in the case of non-zero synchrotron phase angle.
Then, a numerical method is used to obtain the resonance
strength, which is tabulated in the appendix. Comparison
with canonical perturbation is given.

This paper goes as follows: Section 2 gives derivation
and expansion of the normalized off-momentum coordinate
in action-angle phase space coordinates. Section 3 gives
comparison with the analytical result in the case of zero
phase angle and canonical perturbation with non-zero syn-
chrotron phase angle. Then Conclusion is given in Section
4.
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2 HAMILTONIAN RESONANCE
STRUCTURE

The synchrotron Hamiltonian of a single particle in the
normalized phase-space coordinates is [3]

H0 =
1
2
P 2 +

η

|η| [cosφ− cosφs + (φ− φs) sinφs],

where P is a normalized off-momentum coordinate, φ is
the phase angle, φs is the synchronous phase angle, and
νsynθ serves as the independent variable (or time variable).
Here θ is the orbit angle around the synchrotron, and ν syn is
the synchrotron tune at φs = 0. Without loss of generality,
we assume η < 0 hereafter. Since the Hamiltonian H0

is“time” independent, it is a constant of motion. Similarly,
the action, defined as

J =
1
2π

∮
Pdφ,

is a also a constant of motion. Expressing the Hamiltonian
H0 as a function of the action J , we find the amplitude
dependent synchrotron tune becomes Qs(J) = ∂H0/∂J.
With the generating function,

F2(φ, J) =
∫ φ

0

Pdφ,

angle coordinate is

ψ =
∂F2

∂J
= Qs(J)

∫ φ

0

dφ

P
.

In the presence of a harmonic rf phase modulation, the
Hamiltonian becomes H = H0 +H1, where

H1 = νmaP cos(νmθ + χ0)

is the perturbation term. Here, νm, a, and χ0 are the ra-
tio of the rf phase modulation tune to νsyn, the modulation
amplitude, and the phase factor.

To study the effect of rf phase modulation on particle
motion, We can expand the normalized off-momentum co-
ordinate in the action-angle variables as

P =
∞∑

n=−∞
fn(J)einψ ,

where

fn(J) =
1
2π

∫ 2π

0

Pe−inψdψ.

Since P is real, we have f−n = f∗
n. Using the identity,

Pdψ = Qsdφ, we obtain

fn(J) =
Qs(J)

2π

∮
e−inψdφ.
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Because P is an odd function, all even harmonics vanish.
When the modulation tune is close to an odd mul-

tiple of synchrotron tune, i.e. νm ≈ (2n + 1) (in
unit of νsyn), Using the expansion of phase-space coordi-
nate in action-angle coordinates and neglecting those non-
resonance terms, the Hamiltonian becomes

H = H0(J) + νmf2n+1 cos((2n+ 1)ψ − νmθ − χ0)

. Therefore, after we know the strength of f2n+1, we can
analyze the system with rf phase modulation. The table in
the appendix gives such resonance strength with different
synchrotron phase angle.

3 COMPARISON

This section compares the resonance strengths obtained
from the exact canonical transformation and perturbation
expansion.

3.1 Analytical method for a zero synchrotron
phase angle

The Hamiltonian with a stationary synchrotron motion
is:

H0 =
1
2
P 2 + 2 sin2 φ

2

The expansion of P in Fourier harmonics of ψ is given
by [3]

P ≈ −
√

2J sinψ +
(
√

2J)3

64
sin 3ψ + · · ·

The Figure 1 show the difference between this formula
and numerical calculation for the same order, f1.
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Figure 1: the ratio of the first order resonance strength ob-
tained by analytical and numerical method

3.2 Canonical perturbation for non-zero syn-
chrotron phase angles

For a Hamiltonian with non-zero synchrotron phase an-
gle, we can expand the phase angle at φs. Let φ = φs + ϕ,
the Hamiltonian becomes

H =
1
2
P 2 +

cosφs
2

(ϕ2 − 1
3

tanφsϕ3 − 1
12
ϕ4 + · · ·)

Choosing the generating function

F1(φ, ψ) = −
√| cosφs|

2
ϕ2 tanψ,

we find the normalized off-momentum coordinate as P =
−√

2J sinψ| cosφs|
1
4 , and the new Hamiltonian as

H(J, ψ) = J
√
| cosφs| −

√
2

12
| cosφs| 14 tanφsJ

3
2 ×

×(cos 3ψ + 3 cosψ) − 1
6
J2cos4 ψ + · · · .

Using the generating function,

F2(ψ, I) = ψI +Gs(I) sin 3ψ +G1(I) sinψ

we get conjugate phase space coordinates as

J =
∂F2

∂ψ
= I + 3G3(I) cos 3ψ +G1(I) sinψ,

ψ =
∂F2

∂ψ
= ψ + 3G′

3(I) cos 3ψ +G′
1(I) sinψ.

For the first order, we choose

G1(I) =
√

2
4

tanψsI
3
2

| cosψs| 14
, G3(I) =

√
2

36
tanψsI

3
2

| cosψs| 14

to cancel the term with J
3
2 . Thus the normalized off-

momentum becomes

P = −| cosψs| 14
√

2I(sinψ +
1
4I

3G3(− sin 2ψ

+ sin 4ψ) +
1
4I

3G1(− sin 2ψ). (1)

Comparison of resonance strengths obtained from the
canonical perturbation and the exact canonical transforma-
tion obtained by numerical integration is shown in Figure
1. The results are tabulated in Tables 1-3.

4 CONCLUSION

For analytical analysis in the case of a zero synchrotron
phase angle and canonical perturbation in the case of non-
zero synchrotron phase angle, they are very good approx-
imation to the first order when the Hamiltonian values are
small. When the Hamiltonian value is large, the perturba-
tion expansion can overestimate the resonance strength up
to 30%.
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The beam transfer function method measures the re-
sponse of the beam under the influence of harmonic of
phase modulation. The beam detection system measures
essentially the dipole moment of the beam distribution. The
dipole moment depends on effects of nonlinear detuning,
strength of parameter resonances, wake field and potential
well distortion, etc. Accurate calculation of known effects
of rf potential well provides us a means to study the un-
known problems such as the wake field and potential well
distribution.
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Table 1: φs = 0◦

H f1 f3 f5 J
0.10 -0.289E-03 0.323E-04 -0.299E-04 0.101

0.446 i -0.742E-03i 0.461E-03i
0.20 -0.383E-03 0.438E-04 -0.334E-04 0.203

0.629 i -0.317E-02i 0.671E-03i
0.30 -0.419E-03 0.324E-04 -0.551E-04 0.306

0.767 i -0.666E-02i 0.817E-03i
0.40 -0.431E-03 0.255E-04 -0.314E-04 0.411

0.883 i -0.111E-01i 0.990E-03i
0.50 -0.433E-03 0.200E-04 -0.305E-04 0.518

0.983 i -0.164E-01i 0.121E-02i
0.60 -0.920E-03 0.494E-04 -0.990E-06 0.626

1.07 i -0.230E-01i 0.138E-02i
0.70 -0.916E-03 0.532E-04 0.218E-04 0.736

1.15 i -0.303E-01i 0.172E-02i
0.80 -0.956E-03 0.456E-04 0.458E-04 0.848

1.22 i -0.387E-01i 0.220E-02i
0.90 -0.921E-03 0.696E-04 0.536E-04 0.963

1.29 i -0.483E-01i 0.288E-02i
1.00 -0.840E-03 0.132E-03 0.907E-04 1.079

1.35 i -0.592E-01i 0.371E-02i
1.10 -0.677E-03 0.241E-03 0.141E-03 1.198

1.41 i -0.717E-01i 0.478E-02i
1.20 -0.106E-02 0.399E-03 0.110E-03 1.321

1.46 i -0.861E-01i 0.617E-02i
1.30 -0.874E-03 0.379E-03 -0.391E-04 1.447

1.50 i -0.102 i 0.796E-02i
1.40 -0.748E-03 0.260E-03 -0.130E-03 1.577

1.54 i -0.122 i 0.103E-01i
1.50 -0.115E-02 0.318E-03 -0.700E-04 1.711

1.57 i -0.145 i 0.134E-01i
1.60 -0.937E-03 0.289E-03 -0.178E-05 1.852

1.60 i -0.172 i 0.181E-01i

H f1 f3 f5 J
1.70 -0.734E-03 0.292E-03 0.152E-04 2.000

1.61 i -0.207 i 0.252E-01i
1.80 -0.114E-02 0.669E-03 -0.193E-03 2.157

1.60 i -0.254 i 0.366E-01i
1.90 -0.904E-03 0.641E-03 -0.127E-03 2.331

1.55 i -0.325 i 0.594E-01i

Table 2: φs = 15◦

H f1 f3 f5 J
0.10 -0.274E-03 0.365E-04 -0.753E-05 0.103

0.446 i -0.688E-03i 0.450E-03i
0.20 -0.350E-03 0.279E-04 -0.277E-04 0.207

0.628 i -0.299E-02i 0.629E-03i
0.30 -0.747E-03 0.441E-04 -0.150E-04 0.313

0.765 i -0.639E-02i 0.716E-03i
0.40 -0.799E-03 0.375E-04 -0.206E-04 0.421

0.878 i -0.104E-01i 0.847E-03i
0.50 -0.816E-03 0.513E-04 -0.855E-05 0.530

0.976 i -0.152E-01i 0.987E-03i
0.60 -0.819E-03 0.603E-04 0.188E-04 0.643

1.06 i -0.205E-01i 0.115E-02i
0.70 -0.732E-03 0.125E-03 0.691E-04 0.758

1.14 i -0.263E-01i 0.132E-02i
0.80 -0.593E-03 0.926E-04 0.289E-04 0.876

1.20 i -0.322E-01i 0.140E-02i
0.90 -0.977E-03 0.111E-03 0.456E-04 0.998

1.26 i -0.379E-01i 0.110E-02i
1.00 -0.875E-03 0.717E-04 0.620E-04 1.125

1.30 i -0.413E-01i 0.337E-03i
1.10 -0.597E-03 0.127E-03 0.717E-04 1.258

1.31 i -0.376E-01i -0.218E-02i
1.20 -0.530E-03 0.842E-04 0.816E-04 1.403

1.27 i -0.863E-03i -0.127E-01i

Table 3: φs = 30◦

H f1 f3 f5 J
0.10 -0.407E-03 0.121E-04 -0.124E-04 0.109

0.444 i -0.448E-03i 0.388E-03i
0.20 -0.463E-03 0.398E-04 0.369E-05 0.220

0.622 i -0.192E-02i 0.494E-03i
0.30 -0.473E-03 0.674E-04 0.365E-04 0.336

0.753 i -0.333E-02i 0.565E-03i
0.40 -0.407E-03 0.332E-04 -0.409E-05 0.455

0.855 i -0.367E-02i 0.395E-03i
0.50 -0.683E-03 -0.497E-06 0.200E-04 0.580

0.930 i -0.611E-03i -0.310E-03i
0.60 -0.359E-03 0.258E-04 0.823E-04 0.715

0.964 i 0.163E-01i -0.249E-02i
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